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ABSTRACT

Free vibration of eccentrically stepped beams with one step change in cross-section is considered. It is assumed that
the longitudinal symmetry axes of the beam segments are translationally shifted along the vertical direction with
respect to each other. The effect of that arrangement of the segments on the coupling of axial and bending vibrations
of the stepped beam is analyzed. The beam segments are modeled in the frame of the Euler-Bernoulli theory of elastic
beams. Two numerical examples are presented.
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1. INTRODUCTION

Stepped beams often appear as an integral part of various devices and structures in mechanical and civil engineering.
That is why the buckling and vibration analysis of stepped beams is extremely important for engineering practice.
Despite the large number of papers published in connection with this problem (see e.g. [1-22]), this field of scientific
research is still actual with intensive development and generation of new scientific problems. In the available litera-
ture, there are mainly references dealing with homogeneous stepped beams. Also, tapered beams can be modeled
as stepped beams in a manner described in [23, 24]. In the recent years stepped beams made of functionally graded
materials represent an actual research field due to special mechanical characteristics of this kind of materials [25-271].
Decoupled axial and bending vibrations are mainly considered for stepped beams. However, often these two types
of vibrations can be coupled. The reason for this may be, for example, the shape of cross-section of beams [28, 29],
rigid bodies eccentrically attached to the stepped beams [23, 30-33], angled-beam joints in the frame structures [31,
34] and the compliant mechanisms [35], varying material characteristics of beam segments through their thickness
direction [36] as well as mutual eccentric positions of longitudinal symmetry axes of stepped beams segments [22].

The last-mentioned cause of coupling is considered in this paper. In this sense, the objective of our paper is to extend
the approach described in [31, 33] to the case of Euler-Bernoulli eccentrically stepped beams with one step change
in cross-section. In the frame of the Euler-Bernoulli theory of elastic beams, to the authors’ best knowledge of the
literature, the appearance of axial-bending coupling effect in the case of this type of stepped beams was not consid-
ered.
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2. FORMULATION OF GOVERNING EQUATIONS

An eccentrically stepped beam of rectangular cross-section with one step discontinuity is shown in Figure 1. The
width and thicknesses of cross-sections of segments (S,) and (S, ) are denoted by b,(i=1,2) and h, (i=1,2), respec-
tively. In the undeformed configuration of the stepped beam, local stationary inertial coordinate frames
{x,,y,,zi}(i=1,2) are placed in the manner shown in Figure 1. Also, the longitudinal symmetry axes of segments
(S,) and (S,) are translationally shifted in the vertical direction by an amount e . The quantities ; (z;,t)(i =1,2) and
w; (z,. ,t)(i = 1,2) represent the axial and transverse displacements, respectively, of any point of the neutral axes of the
beam segments. The material and geometric characteristics of segments (S,) and (S,) are: E, is the modulus of
elasticity, IX(,.) is the cross-sectional area moment of inertia about axis x,, A is the cross-sectional area, p, is the mass
density, and L, is the length of the i-th beam segment. The partial differential equations of bending and axial free
vibrations of segments (51) and (52) are as follows [37, 38]:
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Based on the method of separation of variables [37, 38], the displacements u;(z,,t)(i=12) and w,(z,,t)(i=12) can
be written as:

w,(z,,t)=W(z,)T(t), u(z.t)=U(z)T(t), 3)
where U, (z,)(i=12) and W,(z,)(i=1,2) are the mode shapes in free axial and bending vibrations, respectively, and

T(t)=e"‘”, i=J=1 , and ® is the natural angular frequency of vibration of the stepped beam.
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Figure 1: Stepped Euler-Bernoulli beam

Introducing (3) into (1) and (2) yields:

d*w,(z,
dz,-E )_k:‘VVi(zi):O' =12, X
2
d*T(t)

where:

o', p'="Lo’, i=12 (7)
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Based on (7), the following relation can be established:

Combining (7) and (8) with the following expressions:

/
x() 2
k :k, p = k ,
k k A

yields:
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the equations (4) and (5) as well as the relations (9) and (10) can be written in the following dimensionless forms:

o
IWIZ) o (z )0, i=12,

(13)

(17)

are the dimensionless frequency coefficient and the dimensionless natural angular frequency, respectively. General

solutions of the equations (13) and (14) are given as follows [37, 38]:
U,(z,)=Cycos(pz,)+Cy sin(pz;), i

where C;,...,Cy;) are integration constants.

3. BOUNDARY CONDITIONS AND THE FREQUENCY EQUATION

3.1. Boundary conditions at the left end of the stepped beam

For the clamped left end of the considered stepped beam the following boundary conditions hold:

U (0)=0, W(0)=0, —(0)=
1(0) (0) iz (0)
whereas for the pinned left end one has:
- d*w,
0,0)=0. W(0)=0, “2:(0)-
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W, (z,)=C,, cos(kz, )+ Cy, sin(kz, ) +C,, cosh(kz, ) +C,, sinh(kz, ), i

1,2,

(18)

(19)
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[1] Introducing C, =[C1(1)... CGU)JT as a vector of integration constants corresponding to segment (51) and putting
(18) and (19) into (20) and (21) yields the following matrix relation:
C, =T,.C, (22)

where for the clamped end one has:

|
—
o
- O O O O o

and for the pinned one:

(24)

O O O O —= O
o O - O O O
- O O O O O©

3.2. Boundary conditions at the junction of the segments

In order to establish corresponding continuity conditions at the junction of the stepped beam segments, let us con-
sider an infinitesimal part of the stepped beam at the step location as it is depicted in Figure 2.

0+0

t(l)

£(1)
Fa(l) - M I e
;; f(2)

50

Figure 2: Free-body diagram of an infinitesimal part of the stepped beam at the junction of segments

Y

Here, F; and F, are the shear forces defined as [31, 33]:

da*w, d*w.
Foy=—El = (L=0), R =—El ,——(0+5), (25)
t(1) 17 x(1) dZ13 1 t(2) 2"x(2) dZ;

F.wy and F,,, are the axial forces given as [31, 33]:

du,

du,
Fao :E1A1d—z1(L1 =8),  Fu=EA iz, (0+9), (26)
and, finally, M, and My, are the bending moments defined as [31, 33]:
d*w, d’w,
Mf(1) = _Ellx(1) ?{(h _5)' Mf(z) = _Ezlx(z) dzzzz (0 + 5)‘ (27)

Taking the length ¢ approaches to zero yields the following continuity conditions at the level of forces and moments:
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d*w, d*W

o =For = ) =ren=(0). (28)
du, d
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where y,, =L /L and e =e/L.Also, at the level of displacements one has the following continuity conditions:

W1(L1):W2(0) And M71(7L1):W2(0)’ 31
RO T
d_Z1(L1)_ dz, (O) g dz, (7L1) z, (0)’ (32)
aw, = _dw, _
U1(L1)_ed_Z1(L1):U2 (0) = U](;/“)—GE(}/“)Z 2(0)‘ (33)

1

The continuity conditions (28)-(33) generate the following matrix relation:

T1LC1 = Tmcz (34)

;
where C, = [C1(2) Cé(z)] is the vector of integration constants corresponding to segment (S, ) and entries of the

matrix T, € R*® are:

sin(ky,)) —cos(ky,) sinh(ky,,) cosh(ky,) 0 0
0 0 0 0 —sin(tk?y,) cos(Tk?y.)
T —cos(kyy) —sin(kyL) cosh(kyp) sinh(ky;) 0 0 (35)
1 cos(kyy,) sin(kyy,) cosh(ky) sinh(kyy;) 0 0 '
—sin(ky,;) cos(kyy,) sinh(kyy;) cosh(kyy;) 0 0
ek sin(ky,,) —ékcos(ky,,) —eéksinh(ky,) —ékcosh(ky,) cos(Fk?y,) sin(Fk?y,,)]
and of the matrix T,z € R®*®:
4| vova)?
_ 4| rvpra)® YeYI 0 0
0 YEYI (YEYI ) 0 (YEYI )
0 0 0 0 0 VEVA\/ZP
VE
Tip = |~VeVs [0 0 vevi [24 0 o _revee [l (36)
7 YE
1 0 1 0 0 0
4’% 0 4 ’w 0 0
YEYI YEYI

0 0 0 0 1 0

Solving (34) for C, yields:
CZ = T1C1 (37)
where the matrix T; € R®*¢ is determined by:
T = T1;1T1L (38)

and represents the transfer matrix between the integration constants of segments (51) and (52 )

3.3. Boundary conditions at the right end of the stepped beam

In this section the following types of the right end of the stepped beam will be considered: free end, clamped end,
and pined end. The boundary conditions for free right end read:
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du. d*w, d’w,
_22(7Lz):0' dfzzz( LZ)_O’ 07232(7@2):0' (39)
for clamped right end one has:
Uz(?’Lz):o' _z(VLz):O' dW2 (7L2):0' (40)
dEZ
and, finally, the corresponding boundary conditions for pinned right end are:
_ _ d’w,
U,(7,)=0, W,(r,)=0, ?222(;/[2):0, (41)
where y,, =L, /L=1-y,,.Introducing (18) and (19) into (39)-(41) yields the following matrix expression
Tzcz =0,, (42)

€ R* is a zero matrix and the matrix T, € R*® has the following entries:

where 0,
e freerightend
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0 cos <\/7—pr_152n2) sin (\/EFEZVu)]
VE VE

sinh <4 Yo¥a EyLZ) 0 0

3.4. Derivation of the frequency equation

Substituting (22) and (37) into (42) implies a homogeneous system of equations for unknown components of the
vector C,. This equations system can be written in the matrix form as follows:

TC,=0,,, (46)
where T eR*>® represents overall transfer matrix given as:

T=T,TT,. (47)
Finally, the corresponding frequency equation for the problem analyzed reads:

f(/?) =detT=0. (48)

4. NUMERICAL EXAMPLES

In numerical calculations of this section, the stepped beam geometrical parameters given in [21] will be used as fol-
lows: h, =19.05mm, h, =549mm, b, =b, =25.4mm, L, =254mm, L, =140mm. Based on the theoretical consider-
ations given in Sections 2 and 3, the effect of eccentricity e on dimensionless natural angular frequencies of the
stepped beam for various combinations of materials of the beam segments is shown in Table 1.

Table 1: Values of the lowest four dimensionless natural angular frequencies for various combinations of materials
of beam segments

Boundary _ _ _ _ _
conditions Ve Yo ¢ “1 ©2 “s3 “a

C-F 1 1 0 491792 11.5118 41.2372 63.3360
(hi-h3)/2L 491721 11.5160 41.1452 63.2388

210/70 | 7800/2702 0 3.56078 12.7782 38.3359 684161

(hi-hy)/2L 3.55984 12.7772 38.0964 68.1344

210/200 | 7800/5700 0 437158 10.8834 38.1153 59.7993

(hi-h,)/2L 4.37092 10.8816 38.0313 59.6232

70/210 | 2702/7800 0 6.04735 10.2739 441409 58.7212

(hi-hy)/2L 6.04700 10.2732 44.1087 58.6712

200/210 | 5700/7800 0 5.47852 12.1880 44.2492 67.5286

(hi-h3)/2L 5.47778 12.1873 44.1545 67.4851

C-C 1 1 0 10.5456 41.6661 63.4959 126.956
(hi-h,)/2L 10.9146 42.6224 63.8636 127.547

210/70 | 7800/2702 0 12.1451 38.6258 68.5107 122.251

(hi-hy)/2L 12.2614 39.4791 68.6165 122.755

210/200 | 7800/5700 0 10.2694 38.5099 59.8737 117.221

(hi-h,)/2L 10.6321 39.2554 60.4155 117.596

70/210 | 2702/7800 0 9.36794 44.6403 58.9085 131.053

(hi-hy)/2L 9.73649 45.1417 59.3185 131.361

200/210 | 5700/7800 0 10.7400 44.6716 67.8257 135.238

(hi-h;)/2L 11.1144 45.8394 68.0187 136.001

C-P 1 1 0 8.48564 33.1612 55.5437 111.304
(hi-hy)/2L 9.03568 33.5446 56.4792 111.553

210/70 | 7800/2702 0 8.52040 32.2248 57.7435 110.564

(hi-hy)/2L 8.80366 32.7437 58.1751 110.898

210/200 | 7800/5700 0 8.11873 30.2376 53.2552 101.200

(hi-h;)/2L 8.65478 30.5024 54.2718 101.308

FMCE Kraljevo 13
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70/210 | 2702/7800 0 2.90797 33.6863 54.0219 110.938
(hi-h3)/2L 8.8912 33.7989 54.8195 111.008

200/210 | 5700/7800 0 8.77674 36.4176 57.7648 121.942
(hi-h)/2L 9.33593 36.9565 58.5750 122.396

P-P 1 1 0 3.58639 27.5587 45.8283 101.296
(hi-hJ)/2L 3.99912 28.4686 46.1990 102.027

210/70 | 7800/2702 0 4.97231 25.0462 50.0108 96.9531
(hi-hJ)/2L 5.08686 25.8629 50.1198 97.5953

210/200 | 7800/5700 0 3.53750 25.3954 43.2920 93.5887
(hi-h)/2L 3.93047 26.1356 43.7984 94.0675

70/210 | 2702/7800 0 2.29499 30.0517 42.0169 105.198
(hi-hy)/2L 2.83477 30.5298 424227 105.562

200/210 | 5700/7800 0 3.60704 29.7006 48.7503 108.041
(hi-hy)/2L 4.03779 30.7882 48.9768 109.005

The limit value e =(h, —hz)/(ZL) corresponds to the case of an eccentrically stepped beam with the flat bottom

surface. The influence of the eccentricity e on the lowest four dimensionless frequency coefficients is examined in

Figures 3,4, 5, and 6. At that, the values of € is taken from the interval 0.001<e <(h,—h,)/(2L).

10
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0.010

g

0.015

Figure 3: The effect of the eccentricity e on the
lowest four dimensionless frequency coefficients
of the clamped-free stepped beam
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s

Figure 5: The effect of the eccentricity € on the

lowest four dimensionless frequency coefficients
of the clamped-pinned stepped beam
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Figure 4: The effect of the eccentricity € on the
lowest four dimensionless frequency coefficients
of the clamped-clamped stepped beam
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Figure 6: The effect of the eccentricity e on the

lowest four dimensionless frequency coefficients
of the pinned-pinned stepped beam
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5. CONCLUSIONS

An analytical approach based on the transfer matrix method for free vibration analysis of stepped Euler-Bernoulli
beams with coupled axial and bending vibrations has been presented. The mutual eccentric position of the beam
segments longitudinal axes has been considered as the cause of coupling of axial and bending vibrations. The pre-
sented method can be also used in the cases of pure axial and pure bending vibrations of stepped beams. The nu-
merical simulations show that the existence of eccentricity e causes small changes in the values of the first four nat-
ural frequencies. These changes are more pronounced in the case of the beam segments made of different materials.
By changing the value of eccentricity e, the crossing and veering phenomena have not been detected.
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