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Abstract: 
  

The paper considers realization of the brachistochronic motion of a mechanical system, 
composed of free body and variable mass material points, by means of an ideal constraint in the 
form of the centrodes.  It is assumed that the system performs planar motion in an arbitrary field 
of forces and that it has three degrees of freedom. In addition, the laws of the time-rate of mass 
variation of the material points, as well as relative velocities of the expelled particles, 
respectively, are known. Constraint reactions of the centrodes are expressed in the function of the 
generalized forces. Applying Pontryagin's maximum principle and singular optimal control 
theory, the problem of brachistochronic motion is solved as a two-point boundary value problem 
(TPBVP). The considerations are illustrated via an example, where it is examined how the change 
in the initial energy of the system affects the normal reaction of the connection and thus the 
coefficient of rolling friction. 
 
Key words: brachistochrone, variable mass, mechanical system, Pontryagin’s maximum 
principle, optimal control 
 
 
1. Formulation of the problem 
 

Consider planar motion of the mechanical system composed of free body and 2 variable mass 
material points. The example shows a disk with radius R and mass M and two variable mass 
points А and В on the periphery of the disc, as indicated by Fig. 1. The system moves in a vertical 
plane. In step 1, for the needs of further considerations, two Cartesian coordinate reference 
systems must be introduced. The first, a stationary coordinate system Oxyz, whose coordinate 
plane Oxy coincides with the vertical plane of motion, and the second, a non-stationary coordinate 
system Cξηζ, whose coordinate origin is attached to center of the disk, the coordinate plane Cξη 
coinciding with the plane Oxy. In addidtion, the axis of the non-stationary coordinate system Cξ is 

defined by the direction АВ. Unit vectors of the non-stationary coordinate system axes are ,λ μ
 

 
and ν


, respectively. The configuration of the considered system is defined by a set of Lagrangian 

coordinates  1 2 3, ,
T

q q qq , where 1q x  and 2q y  are Cartesian coordinates of center of the 

disk, 3q φ  is the angle between the axes Оx and Сξ, which are geometrically independent, and 
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based on them the mechanical system position is unambiguously determined. Changes in masses 
of the points А and В are specified in the following form:  

       0 ,A Bm t m t m t m kt                   (1) 
where m0 is mass of the points А and В at the initial instant of time, and k is defined positive 
constant. Without loss of generality, the magnitudes of relative velocities of the particles’ 
expelling from the points А and В are constant and mutually equal: 

 
Figure 1. Variable mass mechanical system. 

 rel rel
A B rv v v ,                        (2) 

where vr, is a defined positive constant, and 
rel
Av vrλ 

 
 and 

rel
Вv vrμ 
 

. The kinetic energy of  
mechanical system is a homogeneous quadratic form of generalized velocities [1, 2]: 

  
1

, , 1,2,3,
2

i j
ijT a q q i j                 (3) 

where  ,ij ija a t q  are the covariant coordinates of metric tensor of the function of generalized 

coordinates and time t. The kinetic energy of the system, according to (3), is written in the 
following form: 

          2 2 21 2 2 31
2 2 2 .

2
T М m q М m q М m R q

 
      

 
              (4) 

Also, the well known Einsten summation convention is deployed in the paper, where the indices 
have a range of values as follows: , , , , 1,2,3;i j k r  , 1, 2.   It can be considered that the 
studied mechanical system is moving in a field of known potential forces, whose potential energy 
equals: 

 ( , ),t  q                  (5) 
and that the system is acted on by known arbitrary nonpotential forces, so that the generalized 
forces are: 

 ( , , ).w w
i iQ Q t q q                 (6) 

The differential equations of motion for the considered system, as a function of kinematically 
independent coordinates, are written in contravariant form [1, 2, 3]: 

 ,k r i j
kr ijq q q а а q Q                          (7) 

where: 

 ,i
iQ а Q                   (8) 

are the generalized forces in contravariant form, iа   are the contravariant coordinates of metric 

tensor and kr  are Christoffel symbols of the second kind. The generalized forces corresponding 
to geometrically independent coordinates can be represented, in a general case, in the form as 
follows [4, 5]: 
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 var( , , ) .w c
i i i ii

Q t Q Q Q
q

    


q q              (9) 

 The generalized reaction forces that develop due to expelling of the particles, 
respectively, can be written as [4, 5]: 

  
2

var

1

( , , ) ,rel l
i l l l i

l

r
Q t m v v

q


  




  q q              (10) 

while at the same time ( )c c
i iQ Q t  are generalized control forces, whose total power during 

brachistochronic motion equals zero: 
 0.c i

iQ q                 (11) 

Let the values of generalized coordinates be specified, as well as the value of mechanical energy 
of the mechanical system at the initial instant of time: 

   

         

1 2 3
0 0 0 0

0 0 0 0 0

2 2 21 2 2 3
0 0 0 0 0 0 0

0, ( ) 0, ( ) 0, ( ) 0,

, , Π ,

1
2 ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) ,

2

t q t q t q t

Т t t

М m t q t М m t q t М m t R q t E

   

 

 
      

 



  

q q q    (12) 

and also the values of generalized coordinates corresponding to the final position of the system: 

 1 2 3( ) 0.7 , ( ) 0, ( ) 2.f f fq t a q t q t π              (13) 

where E0 ∈ ℝ and tf ∈ ℝ. The problem of brachistochronic motion of a variable mass mechanical 
system, whose differential equations of motion are given in the form (7), consists of defining the 
generalized control forces ( )c c

i iQ Q t , and corresponding equations of the system motion 

( )i iq q t , so that the system moves in the minimum time tf from the initial state defined by (12), 
to the final position defined by (13). 

 
2. Brachistochrone problem as an optimal control task 
 

The presented brachistochrone problem can be formulated as a task of optimal control by 
introducing controls ui: 

 ui=Qi
C                (14) 

where Qi
C are generalized control forces. Taking into account (11), certain control can be 

expressed in the function of others: 

 3 3
.

u q
u

q
 





                            (15) 

The normal form of first-order differential equations, known in the optimal control theory as 
the state equations, taking into account (7), (8), (9), (14) and (15), can be written by incorporating 

the rheonomic coordinate 
4q t  in the following manner: 

 

4

4 4
4

4 4 4

( , , , ) ,

( , , , ) 1,

( , , , ) ( , , ) ( , , ) ,

i i
iq f q p

q f q

p f q c q d q u

 

 

  







q p u

q p u

q p u q p q p  
 

           (16) 

where: 
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var

3
3

,

.

i j k r i w
ij kr i ii

c a a q q q a Q Q
q

q
d a a

q


      



 

 
  
 

 
  
 

   





   


  

          (17) 

Now, based on (7),(14), (15) and (16) differential equations of motion of the system can be 
constructed: 

 

    

      

    

1 1

2 2

3 3

4

1 3 3
1

2 3 3
2

3 1 2 3
1 2

,

,

1,

sin cos 2 ,

sin cos 2 2 ,

2 .

r

r

r

q p

q p ,

q p

q

p mv q q u M m

p mv q q M m g u M m

p mv R u p u p p M m









   

      

    









 

 

 

                (18) 

where g gj 


, and g is the acceleration due to gravity. 
The brachistochrone problem of the considered mechanical system motion described by the 

state equations (18), consists of defining the optimal controls uα and corresponding optimal 

trajectories in state space ( )iq t , so that the mechanical system moves from the initial state defined 
by (12) to the final position (13), in the minimum time, which can be expressed using conditions for 
the functional [6]: 

  4

0

, , , ,
ft

J q u dt q q               (19) 

over the interval [0, tf] it has minimum value. In order to solve the problem of optimal control by 
applying Pontryagin’s maximum principle [7], the Hamiltonian is created of the Hamilton-
Pontryagin form [6]: 

  4
4, , , , , 1 ( ),i

iH q p c d u     q p u λ ν  
               (20) 

where  1 2 3 4, , , Tλ     ,  1 2 3, , T   ν , whereas    4: 0, ,  : 0,i f ft t             and 

  : 0, ft      are costate variables, so that the costate system of differential equations has 

the form: 

 4 4 4 4

,

,

.

i i i i

i ii i i

H c d
u

q q q

H c d
u

q q q

H c d
u

p p p

   
         

   
         

   
          







 

 

 

 

 

 

 

 

  

           (21)  

Based on (20), it can be written: 
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  4
0, , , , , ,H q и H H u q V λ ν 

                     (22) 

where: 

 0 41 ,

.

i
iH p c

H d

    






 


  


             (23) 

Since controls figures linearly in the state equations, such case of controls are known in the 
optimal control theory as singular controls. Then, the necessary optimality condition of 
Pontryagin’s maximum principle is of the form as follows [8]: 

 0,
H

H
u


 





                           (24) 

from where singular optimal controls uα cannot be explicitly defined. Hence, it is required that Нα 
be identically equal to zero alongside the optimal trajectory of state. Singular optimal controls uα 
is defined by further differentiation with respect to time (24) taking into account (16) and (21): 

 0, 0,1,2,...
k

k
d H

k
udt

 
 
 

  
 

             (25) 

In defining the relations (25) the Poisson bracket formalism will be applied [9]: 

      0, , , 0.H H H H H H H u       
            (26) 

Taking into account (24) as well as the fact that for multidimensional singular controls along an 

optimal trajectory it holds  , 0α βH H   [9] further differentiation of (26) yields: 

      0 00, , 0., ,H H H H uH H   
                   (27) 

In addition, the boundary conditions can be represented in the following form: 

  4
4

0
0,

ft
i i

i iq q p                                 (28) 

  
0

0,ft
H t                 (29) 

where     represents the noncontemporaneous variation [1, 2] of the quantity   . Based on 

conditions (24) the costate variables   can be expressed as a function of the costate variable 3 : 

  4
3, , , .q q p                  (30) 

Now, from equations (30) taking into account (23) and (30) it can be expressed: 
 4

3 3( , , , , ) .q    q p               (31) 
Since the initial position of the mechanical system according to (12) is defined, it follows: 

 
4

0 0 0( ) 0, ( ) 0 , ( ) 0.it t q t q t                  (32) 
If (32) is taken into account and the operator of asynchronous variation is applied to the initial 
energy of the system (12) it can be obtained: 

 0 0 0( ) ( ) ( ) 0,i j
ija t p t p t                   (33) 

and lastly, after substituting (32) and (24) into (28), it is obtained: 

 0 0
0 0 0 0 0

0

3

3

( ) ( )
( ) ( ) ( ) ( ) ( ) 0.

( )

j i j
ijj

t a t
t p t a t p t p t

tp
   


           (34) 

Based on (32), (33) and (34), it is obvious that the transversality conditions (28) and (29) in the 
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initial configuration of the system are satisfied. In the final configuration (13) of the mechanical 
system the time is not known, and based on it, the transversality condition results from (29): 

   0,fH t                 (35) 

аnd as quantities ( )i
fp t  and 4( )fq t  are not a priori defined ( 4( ) 0, ( ) 0i

f fp t q t    ), the 

next transversality conditions are obtained from (28) 
 4( ) 0, ( ) 0.i f ft t                 (36) 

Using (18) it can be defined (20) and (21), as well as all other needed quantities so as to solve the 
formulated problem. Based on (20), (31), (35) and (36) the following dependence can be 
established in analytical form: 

      2 2 23 1 2 3
3( ) ( ) ( ) ( ) ( ) .f f f f fλ t p t p t p t p t

 
   

 
          (37) 

If considerations are restricted to the first order singular controls, where   0, 0,H H H  
, 

using (27), (30) and (31), singular controls uβ can be represented in the form as follows: 

 4
3 3( , , , , ).u u q q p                 (38) 

Also, the Kelley necessary conditions for the first order singular control is given in the form [9]: 

 
22

2
, 1

0
d H

u udt

   
       


  
,             (39) 

Applying the Poisson brackets, this condition is fulfilled if the matrix 

 2 2/ ( / ) /К u d H u dt          is positive definite [10]. 

Substituting (38) into (18) and calculated (21) and taking into account (30) and (31), yields a 
two-point boundary value problem (ТРВVP) with nine first-order nonlinear normal form 
differential equations. Due to nonlinearity, in a general case, it is necessary to apply the 
appropriate numerical method [11]. In this paper, the shooting method will be deployed. The 
shooting method is most suitable to perform in this case by the backward numerical integration 

choosing four values ( ), ,i
f fp t t  which will ensure fulfillment of the same number of initial 

conditions (12). The value 3( )ft  was defined via (37). Taking into account (13) and (36) the 

remaining values in the final position are known. Solution of the problem was found for the 
following parameters: 

 
0

2

1 m
1m, 0.4 , 10 , 10kg,

s s

20kg, 0.5 , 9.80665 / .

ra k v m

M R m g m s

   

  

                 (40) 

The numerical procedure gives solutions for the system of differential equations of motion, as 
well as for the costate system in numerical form (see [12]): 

 
1 2 3 1 2 3

3 3( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),q t q t q t p t p t p t t t                    (41) 
and the time of brachistochronic motion tf. 

Table 1 displays values of the missing boundary values for different values of the initial 
energy of the system. It is evident that as the initial value of the energy increases the time of 
brachistochronic motion tf decreases, horizontal projection of the disk center final velocity 
increases, while vertical projection of the disk center final velocity firstly increases and then 
decreases. Also, the disk final angular velocity increases with increasing initial value of the 
energy of the system. Figure 2 displays graphs of controls for corresponding values from Table 1, 
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where graphs of controls u1 are shown with full lines, and graphs of controls u2 are shown with 
dashed lines. 

 E0 [J] 
   

 sft  
 1
m / sp f   2

m / sfp   3
rad / sfp  

1 10 0.8721 0.142251 1.020697 0.308147 
2 30 0.774232 0.280072 1.359575 0.614382 
3 60 0.664431 0.520366 1.681863 1.151118 
4 90 0.570351 0.806867 1.84264 1.79308 
5 150 0.424045 1.43232 1.772866 3.197759 

6 201 0.352064 1.8575 1.584221 4.153642 
7 203.322 0.349594 1.874221 1.576176 4.191238 

Таble 1. Numerical solutions of ТPBVP for different values of the initial energy of the system. 
 

 
Figure 2. Graphs of controls u1(t) and u2(t). 

  
In this example, the possibility of realization of brachistochronic motion of a variable mass 

mechanical system by centrodes - rolling without slipping roulette on a base, will be examined. In 
this way, the generalized control forces are achieved via reactions of constraint. The moving 
centrode (roulette) represents a curve attached to the disk which traces the instantaneous center of 
zero velocity of the disk. The fixed centrode (base) represents a curve fixed in the plane of the 
motion which traces the instantaneous center of zero velocity of the disk in fixed coordinate 
system. Thus, the motion of the system is equivalent to the rolling without slipping of the moving 
centrode on the fixed one (see [13]). Based on a previously determined brachistochronic motion, 
it is possible to determine fixed and moving centrodes, as well as normal and tangential 
component of constraint reaction, unequivocally. Based on them, in order for this motion to be 
possible, the condition for the Coulomb friction coefficient must also be determined. This way, 
the brachistochronic motion is realized without active forces' influence, which is in accordance 
with the elementary brachistochrone problem of a particle in a vertical plane.. The parametric 
equations of the fixed centrode are [13]: 

 

2
1

3

1
2

3

( )
( ) ( ) ,

( )

( )
( ) ( ) ,

( )

b

b

p t
x t q t

p t

p t
y t q t

p t

 

 

              (42) 

and those of the moving one are [13]: 
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 
 

1 3 2 3 3

1 3 2 3 3

( ) ( )sin ( ) ( )cos ( ) ( ) ,

( ) ( )cos ( ) ( )sin ( ) ( ).

r

r

ξ t p t q t p t q t p t

η t p t q t p t q t p t

 

 
           (43)  

 

  
Figure 3. Graphs of fixed centrode reactions of constraint FT and FN. 

 

  
Figure 4. Graphs of rolling friction coefficient. 

 
The reactions of constraint can now be determined as follows: 

 
 
 

1 2

1 2

( ) ( ) ( ) ( ) ( ) / ,

( ) ( ) ( ) ( ) ( ) / ,

T b b b

N b b b

F t u t x t u t y t v

F t u t y t u t x t v

 

 

 
 

            (44)  

where bv


 is base speed intensity at connection point. 

Figure 3 shows a comparative graphic representation of constraint reactions corresponding to 
the numbers from Table 1. It should be noted that when the initial energy of the system increases, 
the normal reaction of the fixed centroide decreases. It is clearly shown in the diagrams that for a 
the initial energy E0=203,322 [J] at one point of the motion, the normal constarint reaction 
reaches a value equal to zero. Since, it is considered unilateral constraint, at this point, the system 
is detached from the constarint. So the initial energy of the system must be smaller than this 
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value. In order to solve this problem centroids must be realized with small toothing, so that 
instead of rolling without slipping, the constraint is achieved in the form of gears. 

Figure 4 shows a comparative graphic representation of rolling friction coefficients. It is 
clearly seen that the coefficient of rolling friction increases with the reduction of the normal 
constraint reaction, and for its zero value tends to infinity. From here, you can see the minimum 
rolling friction coefficient that is needed to make motion for the given initial energy possible. 

 

  
   Figure 5. Evidence of Kelley’s optimality conditions. 
 
Figure 5 shows the fulfillment of Kelley’s optimality condition. 
 

  
Figure 6. The centrodes and the trajectories of points А, В and С for different values of the initial 

energy of the system - Е0=90 Ј and Е0=150 Ј. 
 
Figure 6. shows the trajectories of variable mass points A and B, disk center C, as well as 

centrodes graphs, for the initial energy values Е0=90 Ј and Е0=150 Ј. Graphs of moving centrode 
are given for initial and final position of the system. 
 
3. Conclusions 

 
The present work has solved the problem of realizing brachistochronic planar motion of a 

variable mass mechanical system by means of an ideal constraint in the form of the centrodes. 
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Considerations presented in this work rely on the work [3] and thus are a kind of continuation of 
mentioned study. Brachistochrone problem is formulated as an optimal control task, where 
constraint reactions of the centrodes are expressed in the function of the generalized forces. Paper 
showed how increase of the initial energy of the system affects decrease of normal constraint 
reaction. In this way, the initial energy of the system can be increased to a certain limit for which 
the normal constraint reaction at one point equals zero, so for higher values of the initial energy 
the constraint must be carried out in the form of small gears. Further research can go towards 
limiting the rolling friction coefficient, whereby non-singular controls occur. 
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