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Abstract

The problem of determination of restricted controls ( generalized forces with restricted coordinates ) in transfer of
systems of rigid bodies with holonomous constraints between two given stales in minimum time is considered. It is
shown that optimal control on a boundary of allowable controls area with incvitable consideration of singular controls
existence possibility in a part of control vector coordinates. Review of solutions of problems of singular control
determinations which includes results obtained by authors of this paper. along with some failed attempts of other
authors is given. Authors point to difficulties in computational determination of optimal control | to corresponding
necessary conditions of optimality and to contemporary numerical methods used in solution of this kind of problems.
One of problems is unknown optimal control structure and the fact that optimal controls lie partially on the boundary
and partially inside of allowable controls area. Therefore. solution of two point boundary value problem of
Pontryagin's principle is complicated. Besides. two point boundary value numerical unstable problem | appearing in
this kind of problems. makes every successfully solved task worth-while. Therefore. in contemporary literature some
works are dedicated to solution of concrete optimal control problem. Example of system of bodies with two degrees of
freedom with optimal control which contains singular part illustrate mentioned method.
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I. Introduction

The applying of modern mathematical theory of optimal
control [1.2] to concrete mechanical systems is limited by
difficulties connected with computation of optimal
control. The solving of two-point boundary valuc problem
of maxtmum principle nowadays doesn’t have the general
algorithm and adequate computer programs. The applying
of cxisting programs, for example [3]. isn't always
successful, primarily because of numerical instability [4].
The applying of discrete variant of dynamic programming
1s limited mostly to mechanical systems which, in some
way. can be reduced to one-degree of freedom [3] because
of famous “curse of dimensionality”. Some of more
important problems of variable mass body control have
been solved [6] only in recent years, where it is prominent
that every successfully solved two-point boundary value
problem is worth-while. During the computation of
optimal control for rigid body systems when the controls
are non-potential  generalized forces with restricted
coordinates, special problems appcar. They are causcd by
the fact that the controls partially lic at the boundary of
allowable control area, and partially inside of it and then
they are most often singular [7]. The widest survey of
results from optimal control of bodies systems with
application primarily in robotics can be found in [8] and
the latest results in [9.10], It can be seen from the review
that the difficulties of computing nature caused the giving
up ol computing of optimal controls. Instead of that. the
sub-optumal controls are computed. The question of
singular control computing for robotic systems in the task
of time minimization is made for the first time by the
authors of paper [11]. However, as it was shown in [12],
their solution isn’t optimal because it docsn't satisfy
necessary — conditions  of - optimality  [13.14].  For
manipulator of the same type as in [11]. in the paper [15]
optimal controls with singular parts arc calculated till the

final solution. As in paper [16] the problem of numerical
instability is overcome by determining of moments of
getting to and getting of the point on the singular surface
in phase space instead of unknown initial value of costate
vector. The further exploration in [17] consisted of
investigation of possibility of singular control existence
for the systems with cyclical coordinate, where the
physical explanations of singular control are given. The
task with unfixed final and initial states of rest for two-
degrees of freedom robot was considered in [18] where
the proper algorithm was given for the casc when the
structure of optimal control can be presumed. In paper
[19] optimal controls for the same type of manipulator as
in [18] are calculated by using the fact that the solution is
symmetric. The possibility of phenomenon of chattering
in joining with singular parts of optimal trajectory is
particularly emphasized. In the second part of this paper
the proper task of optimal control and analysis of solution
on the basis of necessary optimality condition is
formulated. The computing method of optimal controls
with singular part is illustrated in the third part of this
paper on example of one system bodies [20.21] with two-
degrecs of freedom

Time

2. The Solution the

Minimization Task

Analysis  of

Let’s consider the time minimization task (1) for rigid

3 o .
bodies systems. where ¢° are the generalized

coordinates, p; arc gencralized momentums, av s
contravariant metric tensor of configuration space. Il is
potential energy . n is number of degrees of freedom, j
are non-potential generalized forces ( controls ) and
constants /1/ >0 determine available controls area.
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where t determines order of singular controls. Costate

vector  coordinates  satisfy  the system  of differential
cquations :
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(4) condition H = 0 as well as in det[a/‘-'/ ] >0 to the

unacceptable case (2] of zero costate vector. Singular
control 7 ; must satisfy Kelley's conditions|13] :
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if it is first order (v = 1 ). Beside that . if it joins with

non-singular part on which v/ » 0 and if at the point
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condition of singular and non-singular parts jomning (
when the optimal controls belong to in a part continuous
functions). Singular controls of second order (r = 2 )
cannot join with in a part continuous controls in optimal
trajectory. The fulfilling of necessary high order
conditions of optimality ( in this case conditions of Kopp-
Moyer, which are analog to conditions (5) ) brings to non-
fulfilling joining conditions [14.7]. Singular controls can
then be joined with controls which in finite time interval
have 1nfinite number of discontinuity ( chattering ),
although such controls are not suitable for technical
realization. On the basis of above mentioned. when
solving concrete tasks of optimal control. first, singular
control which tend to be optumal by fulfilling proper
necessary conditions, are calculated. Then we (ry to add
them non-singular parts. Instead of unknown initial value
of costate vector, moments of the beginning and the end
of singular parts are determined which is by far simpler.
After that adjoint system of differential equations are
integrated with aim to check fulfilling of maximum
principle conditions.

3. Example

Let us solve the problem of optimal control determining
on the example of time minmization problem for bodies
system with (wo-degree of (reedom. System consists of
homogenous bars OA and AB ( Fig.l) of the identical
masses m and lengths L and 2L respectively.

0; ij "

of joining control 1 have discontinuity. the fulfilling of Non-singular optimal conlxols are ;

condition (5) brings to the satisfaction of proper necessary

Fig.1
Parameters of task (1) are:
1 3
a’ s 2 —
2ml (3 + ‘woxq +c0os(2¢7))
3
a?t = , al? =gl = 0,
ami?
IT=mglLsin q‘ LAy = Ay =2mgl, (0)
m=1lkg L= lm
T 2 Vs
g = ¢ =04l = z- 20° g2 = Z = 90
u; =2mgl signv' Q=12 (7)
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During the numerical solution it is necessary 1o determine . ! ;
previously four unknown moments (9) which provide that ‘
integration of differential equations of motion (1) satisfies ) PR -
the four final conditions for state variables. During that < |
proper integrals of system (1) can be used, taking in , |
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of unknown initial value of costate variables. With ‘
purposc of checking Pontryagin’s principle conditions it 0 |
i S . . ) 2 0,2 (3] 3 7 8
1s necessary to integrate adjoint system (4). First the basic 8 mA gL B¢ O‘A_ WL .
system (1), with condition (Y) is integrated in interval (s)

[0.4"]. Then. the basic system (1) and proper Fig.2
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cquations of adjoint system (4) in the same interval
integrate “backwards™  using  the  conditions
VA" = A,(t") = 0 and Ay (") =100
(unspecified value, because system (4) is homogenous ).

At last, with condition VI (0) = 0 . basic (1) and adjoint
system (4) are integrated on the whole time interval. On
Fig2 diagrams of state and costate variables are given.
The numerical computation is derived by Runge-Kutta-
Werner's method of the fifth and sixth order with relative
error tolerance 1070

By analyzing the results it can be noticed :

2 [> 0,1 €f0,1")
N e[t”,tl]

(13)
which. considering (9) completely responds to conditions
(7) ol Pontrvagin’s principle. Beside that. with condition
H=0 deducted from unspecified moment /], it can be
calculated :

Ag = -~-mg[,1'2(0) <0 (14)
and thus all conditions of maximum principle are
lulfilled
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