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1. INTRODUCTION- STATING OF THE
PROBLEM

Application of contemporary mathematical theory on
optimal control over mechanical and other systems is
limited by calculating possibilities of optimal controls.
Nowadays, there are no general algorithms with corre-
sponding programmes for solution of this type limitation
problems, so every solved assignment of this kind de-
serves attention. Consequently, in current professional
literature there is a considerable number of works on
solving actual assignments of optimal control.

This paper is concerned with holonomic scleronomic
mechanical systems the motion of which, subjected to
action of potential and non-potential forces, can be de-
scribed by means of Lagrange’s equation of the second
type in countervariant form:

Lj, k=1,2,.. n (1)

where ¢, /=1, ..., n are generalized coordinates,
I=11(q"c, ), =1, ...n,a=1, ... s is potential en-
ergy of the system which, in this problem also depends
on constant parameters ¢,, a’=d"(q',c,), ijk*1, ... n,
o=I, ..., s countervariant coordinate of metric tensor,

Q;\' :.(_)j'\‘(q",(']k.u/;,ca), k=1, ....n o=1, ..., s
o=l .,

control vector and r/lA are Christoffel’s symbols of the

m are non-potential generalized forces, u is

second type, given in the following expression:
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where a’=a"(¢" c,), ij k=1, .... n, a=1, ..., s, are co-
variant coordinates of metric tensor.

For the purpose ot applying Pontryagin’s principle of
the maximum, it is liecessary 10 substitute the system
consisting of n differential equations of the second order
(1) with the 2n differential equations of the first order.
Formally, in order to apply corresponding method of
optimization, these equations should be added s equa-
tions for which constant parameters c,, are sufficient.

In this way, the motion of the given mechanical system
can be described by means of the following 2n+s differ-
ential equations of the first order in the usual form (dif-
ferential equations of the controlled motion):
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p' =—I”j(kyjyl‘ +a¥ -—+Q;\ , 3)
ay’

&, =1, Lk, j=12,...n,a=1,2,..., 5

where for the state values generalized coordinates q,
generalized speeds )’ and constant parameters ¢, are
taken.

Generally, controls are limited. Limitations are the result
of some subjectively imposed conditions, or of actual
physical capabilities of the control system. The case
when limitations have the form of equations will be dis-
cussed:

¢y((/>/,_1'k,zlﬂ,ca):0,
y=12..p jk=12..n B=12,. . .ma= 12,...s (4)

The task of optimal control by means of motion of the
observed mechanical system with parameters consisits in
determining constant parameters ¢, and controls Up

from the group of permissive controls given in the form
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of relations (4) whose effect on the mechanical system
will make the system, expressed in the form of differen-
tial equations system (3), from the initial state given on
the basis of multiplicity:

03 lqj('o ).y (g ).cal= 0,

0=12..,ng £2n+s, ()
Sk =2 e,
a=12,...,s,

reach the final state given on the basis of multiplicity:

<t’1I [‘Ij(’l 2y i )eq |=

I=12..,n £2n+s, (6)
Jik'=120: 0,
ai= 125185

on condition of minimum function:

4l .
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Jk=12...n, (7
B=12...m,
& =il S

Function / represents optimality criterion.

2. SOLUTION TO THE PROBLEM BY MEANS
OF THE MAXIMUM PRINCIPLE

Solution to the given assignment can be achieved by ap-
plication of Pontryagin’s principle of the maximum. For
that purpose. on the basis of the equation system (3)
Pontryagin’s function is being introduced in the follow-
ing form:
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(8]

Y] o m, (8)

where A, A;ivs are coordinates of the coupled vector.
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On the ground of the expression (8) coupled equations
can be formulated:

: 3 ob,
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i.0=12
a=12...5:
r=2..p

where u” are multipliers, and, on the basis of Pon-
tryagin’s theorem the expression Ay =—-1 can be ac-
cepted.

Employing Pontryagin’s principle of the maximum, i.e.
of the following condition:

oH :ﬂrfg’_ (10)
Ju Oug
B B
y=12...p
B=12,...m

and the expression (4), and will eliminating the multi-

plier 4 . control can be obtained in the form as fol-
lows:
up=ugllovsa’ v c) (1)
'} Bl o4qd YV Cq)
i, j,k,6=12...n,
=2 S
L=12..,m.

When, in this way, obtained control is changed into dif-
ferential equations of motion (3) and into the coupled
system (9), the system of 4n+2s differential equations of
the first order will be obtained in the usual form. For
determination of the solution in the final form. it is nec-
essary to have 4n+2s limitation conditions in case time t,
is given. If a smaller number of limitation conditions is
given, then transversality conditions are used [1]. On
this basis, some coupled variables are equal to zero if in
the initial and final conditions corresponding phase vari-
ables are not given. Solving the two-point limitation
problem, optimum trajectories are obtained in the torm:



i,jk,6=12...n,
a=12.,..5

Substituting the solution (12) into the expression (11),
programmed controls are obtained:

Uy = uﬂ(l), B=12...m. (13)
Such solutions represent extreme solutions, and if a
greater number of them appears, the optimum ones
should be sought.

3. APPLICATION OF SYMBOLIC PROGRAM-
MING AND OF MATHEMATICA INTER-
PRETER

Solution of the given assignment with the above pre-
sented algorithm requires a great number of routine pro-
cedures which demand lengthy calculation. Besides.
mistakes typical of “manual” procedure can occur. For-
tunately, nowadays, technique of symbolic programming
makes possible production of programmes for symbolic
performance of complex mathematical operations.

In this paper symbolic interpreter MATHEMATICA
will be employed with reference to similar programme
areas, such as interactive numerical systems (MATH-
CAD, MATLAB), or interactive algebraic systems
(MACSYMA, MAPLE, REDUCE).

Differing from the classical programmes, which can be
comprehended as a series of instructions on the basis of
which out of one group of numbers the other group
emerges, MATHEMATICA can be considered as a
group of rules used as a basis for transforming expres-
sions and formulae from one form into another. Never-
theless, MATHEMATICA is relatively slow and almost
useless for intensive numerical calculations, so it is use-
ful to include- output results of the interpreter into the
existing FORTRAN programmes. For this purpose there
are commands FORTRAN Form [...], which transform
corresponding expressions into the form suitable for
FORTRAN syntax.

3.1. Programme for obtaining equations of two-
point limitation problem with parameters
and control limitations

aKont = Inverse[aKov];
krist[j .k ,d ]:= Sum[

aKont[[d, I]] (

DlaKov[[k. 1]}. q[j]] +
DlaKov[[l. j11. q[K]] -

DlaKov([[j. k], q[1]]

J#2,
{1, 1, n}
)
H = Module[
{sum1, sum2, sum3},
suml = Sum[lam[i] y[i], {i, n}];
} sum2 = Sum|[- ni[d] krist[j, k, d] y[j] y[k]. {d.
n
U.n}, {k, n}];
sum3 = Sum(ni[d] aKont[[d, j]] (-D[pi, q[j]] +
Qgen[[j1D,

{d. n}, {j.n}:
Return[-f + sum1 + sum2 + sum3];
I;
resenje = Module|
{sistl, sist2, prom]1, prom2, sist, prom},

sistl = Table[D[H, u[b]] - Sum[mi[g] DI[fi[g],
u[b]], {g.p}]1==0,

{b.m}];
sist2 = Table[fi[g] == 0, {g,p}1;
proml = Table[mi[g], {g, p}];
prom2 = Table[u[b], {b, m}];
sist = Join[sist], sist2];

prom = Join[prom|1, prom2];

Return[Solve[sist, prom]]:
I
res = resenje([1]];
qd[j_] := D[H. lam[j]] /. res;
yd[k ] := D[H. ni[K]] /. res:

cdla ]:=0/. res;
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lamd[i_] := -DfH, q[i]] + Sum[mifg] D(fi[g], qfi]], {e,
ptl/. res;

nid[d_] = -D[H, y[d]] + Sum[mi[g] D(fi[g], y[d]]. {g,
p}l/. res;

etad[a_] := -D[H, c[a]] + Sum[mi[g] D(fi[g], c[a]], {g,
p}]/. res;

pravilo = {q[i_] -> x[i], y[k ] -> x[n + k], cla ] >
x[2n+a],

lam[i_] -> x[2n+s+i], ni[d | -> x[3n+s+d],
etala_]->x[4n+s+al};

xprime[i_] := (qd[i] /. pravilo) /; (i <= n);

xprime[i_] := (yd[i - n] /. pravilo) /; (i>=n+ | && i <=
2n);

xprime[i_] := (cd[i - 2n] /. pravilo) /; (i >=2n + | && i
<=2n +5);

xprime[i_] := (lamd[i - 2n - s] /. pravilo) /; (i >=2n +s +
| && i <=3n+5);

xprime[i_] := (nid[i - 3n - s] /. pravilo) /; (i >=3n +s +
| && i <=4n +53);

xprime[i_] := (etad[i - 4n - s] /. pravilo) /; (i >=4n + s +

1);
pd[i ,j ]:= D[xprime[i], x[j]];

The given programme contains determination of Jacobi-
ans, necessary for numerical way of solving. Finite dif-
ferences method gives very good results in solving the
problems of this kind [1].

4. EXAMPLE

Figure 1. shows mechanical model of a lift.

Figure 1.
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It is necessary to determine coupling m in the function
of time which is to act onto disc I, and on mass M of the
counterweight B in order to make load A, of mass
m=200 kg move from the initial state:

th=0, x(0)=0, £(0)=0, (14)
and reach the final state:
t=10[s} x(10)=h=20[m] (10)=0, (15)

on condition of the function minimum:
1%,
I'=={u"dr, (16)
25

where the control « is given as:

m
ra

U=

(17)

Ropes mass and masses of discs are of minor value.
Friction moment in bearings O, and O, can be ne-
glected. It will be considered that there is no slippage
between the rope and discs.

Function (16) is used when minimization of energy that
converts into heat within electric motor coils is needed,
and the explanation is given in [1].

Given mechanical system has one degree of free move-
ment, and for generalized coordinate motion x of the

load A in relation to the initial state is taken.

Kinetic energy of the system is:

T =—(M +m)i?, (18)

| —

while potential energy is given by the expression:
[T =mgx+ Mg(h - x), (19)

Differential equation of the svstem motion (1) has the
following form:

- (M = m)g +u

20).
M +m )

and differential equations of the controlled motion (3)
are of the following form:

- | |

q =V,
"-)l - ((.‘l —I}I)g +ll_’ (2”
c+m
(:'| :O.

Now, Pantryagin’s function can be formulated (See (8)):



ey - +
H = —lu2 + A+ —-——((' m)e -y (22)
2 c+m

and on its basis the coupled equation system can be ex-
pressed (See (9)):

Z]=O
Vi =-4y, (23)
n u-2m
=¥ g2
(c]+m)

Applying Pontryagin’s principle of the maximum, i.e. of
conditions (10), in case of control out of the open group,
control in the form (11) is obtained:

Vi

(24)

H = s
m+

With substitution of the expression (24) into equations
(21) and (23) the system of six differential equations of
the first order is obtained in the usual form:

g =)
yl= Vi (e -m)g
(m+c| )2 m+ ¢ -

(I —0,
Ay=0, (25)
V] =—/1|,
’_7]: vlz _ 2mgyv, .

(m+cl)3 (m+c|)2

Initial conditions (14) and final conditions (15) can be
expressed in the following form:

q'(0)=0, »'(0)=0,

q'(10) = 20[m] y(10=0, (26)
while, on the basis of transversality (See [1]):

n'(0)=0, 7'(+0)=0. 27)
Using limitation conditions (26) and (27) solutions to
the differential equations system (25) can be obtained in
the form:

ql = ql(l), v' =y'('t), ¢y = const, Ay = const,
vy =v(t), /]' :r7|(l). (28)

With substitution of the previous solutions in (24) pro-
grammed optimal control is obtained u = u(7).

The solution is obtained (numerically) applying the
method of finite differences. Diagrams of phase vari-
ables are shown on Fig. 2, and diagram of control is
shown on Fig. 3.
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Numeri¢ko resavanje problema optimalnog
upravljanja i parametarske optimizacije
mehanickih sistema

Z. Markovié, A. Obradovic, J. Vukovié

U radu je dat algoritam za izraGunavanje program-
skih optimalnih upravljanja i konstantnih parametara
mehanickih sistema, kada su nametnuta ograni¢enja
upravljanja i faznih promenljivih tipa jednakosti.
Postupak je zasnovan na principu maksimuma.
Uslovi principa maksimuma dopunjeni su odgo-
varajuéim uslovima transverzarlnosti. Dvotackasti
grani¢ni problem principa maksimuma resen je nu-
meri¢ki, metodom kona¢nih razlika. Primenom sim-
bolickog programiranja izbegnute su moguce gredke
svojstvene pri tzv. “ru¢nom” manipulisanju simbol-
ickim izrazima pri dobijanju diferencijalnih jed-
nacina i odgovarajué¢ih Jakobijana. Postupak je ilus-
trovan primerom.
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Numerical Solution to Optimal Control
Problems and Parameter Optimization of
Mechanical Systems

Z. Markovié, A. Obradovié, J. Vukovié

In this paper algorithm for calculation of pro-
grammed optimal controls and mechanical systems
constant parameters is given, when limitation to the
control and phase variables of the equation type are
imposed. The procedure is based on the maximum
principle. Conditions of the maximum principle are
supplemgnted with corresponding conditions of
transversality. Two-point limitation problem of the
maximum principle is numerically solved using the
method of finite differences. With isymbolic pro-
gramming, possible mistakes, typical for so called
“manual” magjpulation of symbolic expressions in
obtaining differential equations and corresponding
Jacobians, were avoided. The procedure has been
illustrated with an example.
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