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Abstract: 

  

A steady compressible isothermal slip gas flow in a microtube is analyzed for low Reynolds 

numbers. The microtube is with varying cross-section, which from the standpoint of geometry 

gives three considered cases: convergent microtube, divergent microtube and microtube with 

constant radius. The gas flow is caused by the pressure difference between the inlet and the outlet 

cross-section. The solution for pressure and mass flow rate is obtained by macroscopic approach 

from Navier-Stokes equations with the second order velocity slip boundary condition. Analysis of 

the order of dimensionless terms in governing equations is possible with the usage of exact 

relation between Reynolds, Mach and Knudsen numbers. The solution procedure for this flow 

model is based on perturbation approach, where significant variables are assumed in the form of 

perturbation series. The first approximation represents the solution for the continuum flow 

conditions, and the second approximation incorporates the effect of gas rarefaction. The obtained 

solution is compared with verified results of numerical experiment found in literature and good 

agreement is achieved. Hence, the reliability of obtained solution and presented method is 

confirmed.  
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1. Introduction 

 

Microtubes belong to the class of mechanical parts of microdimension, which are today most 

often used as an integral part of the micro-electromechanical systems (MEMS). MEMS are 

consisted of electrical and mechanical components, with characteristic dimensions between 1µm 

and 1 mm.  

Through history, man has been producing tools for everyday life. In the beginning 

dimensions were the order of the human size and later bigger and bigger. In 1947 the first 

transistor was built. Along with Richard Feynman’s talk “There’s Plenty of Room at the Bottom”, 

at a meeting of the American Physical Society in 1959 [1], the growth and development of micro 

technology was popularized. 

Today MEMS devices find increasing application in various fields of industry and medicine. 

MEMS are often used in gas environments, therefore, the study of gas flow in elements of MEMS 

is very up-to-date.  
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In the gas flow in microtubes ratio of the molecular mean free path λ and characteristic 

dimension is not negligible. As a result, the effect of rarefied gas occurs. The measure of gas 

dilution is the Knudsen number (Kn). According to the values of the Knudsen number, we differ: 

continuum flow ( 001.0Kn ), slip flow ( 1.0001.0  Kn ), transition regime ( 101.0  Kn ) 

and free molecular flow ( 10Kn ) [1]. The case of slip gas flow is considered in this paper. 

The gas flow behavior in long microtubes were investigated in [2]-[5]. Moreover, the similar 

approach for microtube with constant radius is developed in [6], where velocity contours are also 

considered. 

In this paper the gas flow in microtubes with variable cross section is analyzed. In section 2, 

the governing equations and necessary assumptions for obtaining solution of characteristic 

variables is presented. An analysis of the obtained results for the pressure field and the mass flow 

field is presented in section 3. The conclusion with the future research plan is given in section 4. 

 

2. Problem description  

 

The problem of gas flow through a long microtube of a variable cross-section is considered. 

The microtube radius varies depending on the longitudinal coordinate z~ . The three cases of the 

tube geometry are considered: convergent, divergent and microtube with constant cross-section. 

 

Fig. 1. Geometry of a microtube. 

For the solving systems of equations, it is necessary to define radius in every point of the 

microtube wall.  In order to consider the different cases of microtube geometry, it is necessary to 

define a unique law of radius change. Radius of the tube R
~

changes linearly with longitudinal 

coordinate z~ : 

)1
~

(~~
)(

~
 ii RzRzR ,                  (1) 

where all dimensional variables are marked with ~, while all non-dimensional variables in further 

text will be without ~. 

The gas flow in the microtube occurs due to the pressure difference at the inlet and the outlet 

cross-section. The considered flow is also compressible, isothermal, stationary and axisymmetric. 

The microtube geometry indicates the use of a cylindrical coordinate system (Fig.1.). The gas 

flows at low values of Mach number and can be considered as highly subsonic. 

 

2.1 Governing equations 

 

The governing equations for stationary, isothermal, axisymmetric and compressible flow in a 

long microtube are consisted of continuity equation, momentum equation and equation of state 
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for an ideal gas. The governing equations expressed in cylindrical coordinates, i.e. continuity 

equation (2), streamwise momentum equation (3), radial momentum equation (4) and equation of 

state for an ideal gas (5) are: 
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Here ~  is dynamic viscosity, p~  is the pressure, ~  is the density, T
~

 the temperature, and 

gas constant is gR . Longitudinal component of velocity is u~ , while radial velocity component is 

v~ . 

In order to analyze and solve these equations they are transformed into dimensionless form 

and several assumptions are introduced. 

 

2.2 Dimensionless variables and assumptions 

 

Dimensionless equations can be obtained by introducing the following dimensionless 

variables: longitudinal velocity u, radial velocity v, pressure p, temperature T, radial coordinate r, 

longitudinal coordinate z and dynamic viscosity µ, 

eu

u
u ~

~
 , 

eu

v
v ~

~
 , 

ep

p
p ~

~
 , 

eT

T
T ~

~

 , 
eR

r
r ~

~
 , 

L

z
z ~

~
 , 

e


 ~

~
 .          (6) 

Equation (6) introduces the consideration of the variables according to the reference cross-

section. In order to satisfy the condition of subsonic flow, it is necessary that characteristic non-

dimensional numbers have values in a certain range.  As the pressure in the microtube changes 

from the inlet to the outlet cross section, it follows that Knudsen and Mach numbers change from 

the inlet to the outlet. The necessary condition is that these non-dimensional numbers are not 

allowed to exceed critical values - the values which determine the flow regime. As the maximum 

Mach number occurs at the outlet cross section, Mach number will not exceed critical value if its 

value is fixed at the outlet cross section. Because of this condition, the outlet cross section is 

chosen for the reference cross section. All variables in the reference cross section are indexed 

with “e”. 

As a next step, equations obtained with dimensionless quantities must be transformed into a 

simpler form, which can provide a solution for the field of pressure and mass flow. The 

assumptions are necessary to transform equations into a simpler form. Assumptions are based on 

the characteristics of a flow. In our problem the considered flow is carried out at the small values 

of the Mach and Knudsen numbers. Based on this condition, it is assumed that values of the Mach 

and Knudsen number at the outlet cross section, Mae and Kne, are equal to the product of the 

small parameter ε and the corresponding constants  and η: 
2
e

m Ma  ,                 (7) 

e
n Kn .                (8) 
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The small parameter ε, with the condition ε <<1, is defined as the ratio of the diameter at the 

outlet cross section and the length of the microtube: 

L
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~

~
2

 .                 (9) 

From the condition that the values Mae and Kne are small, it can be concluded that the exponents 

of the small parameter ε in equation (3) and (4) must be positive, that is: m > 0, n > 0. 

As the flow occurs at low values of Reynolds numbers, it is assumed that the ratio of 

dimensionless numbers Mae and Ree, at the microtube exit is of the ε order of magnitude: 
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Here Mach and Reynolds numbers at the outlet cross section are defined by: 
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The Knudsen number at the microtube outlet cross section is: 

e

e
e

R
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2
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and the dependency between Knudsen, Mach and Reynolds number can be obtained as: 

e
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as well as the dependence between the parameters γ, β and η: 

2

2
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
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The microtube geometry varies slowly with the growth of the longitudinal coordinate, therefore 

the slope angle of the microtube wall is small. This leads to the conclusion that the radial 

component of the velocity (v) is much smaller than the longitudinal velocity component (u). 

Accordingly, it is assumed that the radial velocity component can be expressed as: 

Vv
~~  .               (16) 

 

2.3 Dimensionless governing equations 

 

According to previously defined dimensionless numbers and assumptions, the dimensionless 

form of the system of equations is obtained: 
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Velocity slip boundary condition in dimensionless form, necessary for the definition of the 

velocity at the wall, is the second order boundary condition: 
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As a next step, it is necessary to express characteristic variables in the form of perturbation series: 

4/10 pKnpp e ,              (22) 

4/10 uKnuu e ,              (23) 

4/10 VKnVV e ,              (24) 

where the values indexed with “0” mark the first approximation values, and the values with index 

“1/4” are the second approximations. It is possible from the dimensionless system of equations, 

on the basis of perturbation method, to obtain system of equation for every approximation. The 

equation system is consisted of governing equations together with boundary and axisymmetric 

condition for every approximation: 
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- the second approximation 
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It is possible to solve the system of equations and get the pressure field and mass flow field. 

Therefore, the differential equations for the pressure field are:  

400
32

'
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                (35) 
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On the basis of the pressure field, defined with equations (35)-(36), it is possible to obtain the 

mass flow field. 

 

3. Results 

 

The results for the gas flow at small Reynolds numbers through a divergent, convergent and 

microtube with constant radius are presented in this section. Since solution the mass flow rate of 

microtube with constant cross-section exist in the literature [7,8], comparison of this solution with 

the results obtained in this paper is also showed. 

The first approximation for all variables represents the solution for the continuum flow 

conditions, in other words the case without the slip effect. The second approximation for all 

variables includes the effect of gas rarefaction. Further, as the outlet cross section is the same for 

all examples of geometry, the solutions at the outlet cross section are also the same for all of the 

three geometry cases.  

 

3.1 Pressure distribution 

 

According to the pressure distribution (Fig. 2.) it is noticeable that the pressure decreases with 

the increase of the longitudinal coordinate z. The first approximation of pressure (Kne=0) shows 

the same behavior.  

 

 
Fig. 2. The pressure distribution in a microtube with different Knudsen numbers and different 

geometries: divergent microtube (Ri=0.7); microtube with constant radius (Ri=1) and convergent microtube 

(Ri=1.3). 
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As the first approximation has the greatest impact on the pressure value obtained as summation of 

the two approximations, the behavior of overall pressure is similar to the behavior of the first 

approximation. 

The results presented for different Knudsen number values show that its influence, or an 

increase in Knudsen number, reduces the pressure value independently of the microtube geometry 

(Fig. 2.). The comparison of the pressure field results for the same Knudsen number, and for 

different microtube geometries, gives that the dimensionless pressure at the inlet cross-section is 

highest in the divergent microtube, and the smallest in the convergent one.  

In order to obtain pressure values for all geometries, the same conditions at the outlet cross-

section are given. For obtaining the same value of dimensionless pressure at the outlet cross-

section, the greatest dimensionless inlet pressure is required in the divergent tube, then in the tube 

with constant cross section, and the smallest ratio of the dimensionless inlet and outlet pressure is 

required in the convergent tube. 

 

3.2 Mass flow distribution 

 

With the known pressure field it is possible to investigate the behavior of the mass flow field 

for different geometries. Results are presented as dependency between 10 mm  , where m is 

dimensionless mass flow rate, 0m  is dimensionless mass flow rate for the continuum, and the 

ratio of the inlet and the outlet pressure values. It is possible to show that the ratio 0mm   can be 

presented as 0 . 

From Fig. 3 it is obvious that the gas rarefaction increase leads to the smaller increasement of 

the mass flow than in the case when slip is neglected. 

 

 
Fig. 3. The mass flow distribution in a microtube, at different cross-sections and with different 

Knudsen numbers and different geometries: divergent microtube (Ri=0.7); microtube with constant radius 

(Ri=1) and convergent microtube (Ri=1.3). 
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The solution for the mass flow rate of a rarefied gas through microtube with constant radius 

(Ri=1) exist in the literature [7,8], where results are reached numerically from the linearized 

Boltzmann equation. The comparison of results from [7,8] with the results obtained in this paper 

is also presented and good agreement is achieved (Fig.3). It is concluded that for the smaller 

pressure ratio and for the higher values of Knudsen number it is necessary to go with more 

approximations in perturbation series. 

 

3. Conclusions 

 

In this paper the case of compressible isothermal slip gas flow at low Reynolds numbers is 

analyzed. Gas flow occurred at low Reynolds numbers due to the pressure difference at the inlet 

and outlet cross section and thorough microtube with variable cross section. Three cases of 

geometries are analyzed: convergent microtube, divergent microtube and microtube with constant 

radius. According to all conditions it is possible to define the small parameter ε and appropriate 

relations between ε and Mach, Reynolds and Knudsen numbers. Each term contribution in 

governing equations is estimated in this way. The obtained solutions for the pressure and mass 

flow field are assumed by perturbation series, where two approximations are achieved. The 

validity of used method is confirmed comparing with available numerical results from the 

literature. 

The further research plan is related to the microtube gas flow at higher Reynolds numbers and 

to the solution with the higher number of approximations. 
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