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Abstract: Phenomenological plasticity models that relate relative density to plastic strain are fre-
quently used to simulate ceramic powder compaction. With respect to the form implemented in
finite element codes, they need to be modified in order to define governing parameters as functions
of relative densities. Such a modification increases the number of constitutive parameters and makes
their calibration a demanding task that involves a large number of experiments. The novel calibration
procedure investigated in this paper is based on inverse analysis methodology, centered on the mini-
mization of a discrepancy function that quantifies the difference between experimentally measured
and numerically computed quantities. In order to capture the influence of sought parameters on
measured quantities, three different geometries of die and punches are proposed, resulting from a
sensitivity analysis performed using numerical simulations of the test. The formulated calibration
protocol requires only data that can be collected during the compaction test and, thus, involves a
relatively smaller number of experiments. The developed procedure is tested on an alumina powder
mixture, used for refractory products, by making a reference to the modified Drucker–Prager Cap
model. The assessed parameters are compared to reference values, obtained through more laborious
destructive tests performed on green bodies, and are further used to simulate the compaction test
with arbitrary geometries. Both comparisons evidenced excellent agreement.

Keywords: powder compaction; Drucker–Prager Cap model; inverse analysis; refractory; material
characterization; yield surface

1. Introduction

The ceramic industry includes the production of various components with different
engineering applications, ranging from simple ones, such as tiles and bricks, up to more
sophisticated ones, represented by refractory products, aerospace components, devices
for bio-applications, etc. Considering the evident industrial interest, a significant research
effort has recently been devoted to the development of models to be used for reliable
simulations of different production phases (e.g., see [1–9]). Such simulations are of major
importance in the manufacturing of advanced components, such as those used in refractory
applications for the control of liquid iron flow, those designed to work in aggressive
environments and those subjected to severe thermo-mechanical loadings [10,11].

Ceramic parts are commonly produced by a two-step process [12]. Within the first
step, the component is shaped through the compaction of powder material in order to
form the so-called “green body”, which is then, in the second step, subjected to sintering
at a high temperature. This manufacturing path may induce a density gradient in the
final part, or more severe internal voids or defects. A lack of density homogeneity within
the green body directly influences the local shrinking during the sintering phase, while
internal defects may lead to crack initiation and subsequent damage of the structural
component. Obtaining high homogeneity is therefore required, and is achievable through
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the optimization of tool geometry. In order to avoid trial and error approaches when
performing this optimization, it is desirable to have a reliable numerical model of the
compaction process.

An important ingredient of this numerical modeling represents the constitutive de-
scription of a powder involved within the process. Such constitutive modeling is rather
challenging, as the material changes its mechanical response from a powder loose state,
to a dense one, typical of a solid body. Several authors have developed micro-mechanical
models in order to study the evolution of the contact pressure between grains at the
particle scale (see e.g., [4–6]). In order to capture the effects of particle rearrangement,
deformation and pore filling, the modeling is based on a discrete element method ([5,6]) or
a multi-particle finite element method [7,8]. These models have to be multi-scale, in view
of their application for large component simulations, with particle-scale simulations used
to generate constitutive equations for large scale continuum-based models [13]. Such a
circumstance makes both the numerical implementation and calibration laborious tasks,
where the latter frequently requires a large number of experiments [6].

Alternatively, continuum-based models using the traditional finite element method
can be used for the simulations, offering the advantage of solving the problem on a
single scale. These models proved to be effective in predicting local density and stress
distributions within the green body and are often adopted as a more robust alternative to
multi-scale approaches [13–16]. Using the assumption that within the compacted green
body at high relative densities the discontinuity of powder becomes irrelevant [14], its
mechanical behavior can be described by phenomenological models used in soil mechanics.
Following this idea, there have been diverse applications employing models such as the
Mohr–Coulomb [15], Cam-Clay [17] and Drucker–Prager Cap model [15], or, when elasto-
plastic coupling becomes important, a modified Drucker–Prager Cap model [13,14,18]. The
Drucker–Prager Cap model represents one of the models with the largest flexibility, as its
application is used, aside from powder, for the modeling compaction process of broken
wooden waste materials [19].

With regards to the reliability of the computational results, regardless of the numerical
strategy used to model the powder compaction, the accuracy of the inputs in terms of
governing parameters is crucial. As the current praxis, destructive experiments are per-
formed on green bodies for calibration purposes. In [14], Han et al. used Brazilian disk
tests together with an uniaxial compression test to assess shear failure surface within the
modified Drucker–Prager Cap model. A similar approach is adopted by Sinha et al. [15]
within the study of the sensitivity of Drucker–Prager Cap parameters during the unloading
phase. Such approaches are more laborious when employed to capture the evolution of
parameters over a range of relative densities, requiring the testing of an elevated number
of green bodies with different relative densities. Addressing the problem of the identi-
fication of parameters as a function of relative density, Garner et al. [20] proposed the
scheme for the parameter extrapolation of relative density levels that are difficult to test.
In a more recent study, Khoei [18] showed that by employing radial stress measurements
collected during the compaction tests, cap surface parameters can also be calibrated. The
assessed parameters are further verified through the numerical models used to simulate
the compaction test.

Melo et al. [21] used a more sophisticated approach in parameter identification based
on inverse analysis by considering data from a measured pressure. The best parameter set
was selected as the one that minimizes the discrepancy between measured and simulated
data. To keep the number of parameters to be identified relatively small, a simpler version
of the Drucker–Prager Cap model was used without elasto-plastic coupling and with
simpler hardening that only affected the cap surface. Zhou et al. [22] also used an inverse
analysis-based approach, where only the pressing curve was used as the experimental
data. In their study, a simpler constitutive model without elasto-plastic coupling was
also consid77ered. Atrain et al. [23] also made reference to the Drucker–Prager Cap
model, also introducing elasto-plastic coupling. They calibrated the model on the bases
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of artificial neural networks. Penasa et al. [24], on the other hand, employed a rather
complex model for the powder compaction with a yield surface that changes its shape
with the compaction. They evidenced that, when the model with such a high complexity
is employed, its calibration becomes a demanding task. For the simulation of simple
experiments (e.g., a cylinder under uniaxial strain compaction) it was shown that multiple
material parameter sets could fit the same experiment.

In most of the previously mentioned earlier studies, destructive experiments on
green bodies were required in order to provide constitutive parameters. The use of the
numerical simulation of the compaction process was restricted to merely verification
purposes, without its systematic incorporation within the calibration procedure. It is
therefore clear that the calibration of such models still represents a practically meaningful
challenge that arises in diverse areas of the application of powder compaction. Newer
studies that employ an inverse analysis for the parameter calibration evidenced certain
numerical challenges that the procedure has to face. Hence, simplified constitutive models
are commonly used (such as in [21,22]). From the point of view of the inverse analysis, if
more complex models with a larger number of parameters are being employed (such as
in [24]), the problem becomes ill-posed when only simple experiments are considered
(e.g., the uniaxial pressing of a flat cylinder).

The contribution presented herein to the above outlined problem consists of designing
a procedure aimed at identifying constitutive parameters by using only measurable quanti-
ties that can be collected from compaction tests. These experimental data are employed as
the input of an inverse analysis procedure, centered on a minimization of a discrepancy
function, which quantifies the difference between measured and computer quantities. Thus,
constitutive parameters of complex models can be assessed only by performing compaction
tests, avoiding any further experimentation on green bodies. In contrast to certain previous
studies that used a similar approach (e.g., [21,23,24]), a larger diversity of experimental
data is included in this study by simultaneously considering different geometries within
the calibration phase. This diversity should serve to “activate” all the material parameters
so that their assessed values can be treated as a representative one, rather than fitting a
single experiment only. In order to ascertain the influence of sought parameters to the
measurable quantities (here, specifically the force–displacement relationship), numerical
sensitivity analyses are first performed. Such analyses result in the formulation of three
different die/punch geometries, which prove to be sufficient to calibrate the considered
constitutive model.

Within the novel procedure that is proposed and investigated in what follows, a refer-
ence is made to the modified Drucker–Prager Cap (DPC) model, though the methodology
presented can be applied also to other constitutive models used for powder compaction
simulations. With respect to some previous studies ([13,14,19–23]), the modification of the
model proposed here includes elasto-plastic coupling and a more flexible definition of
hardening that also affects the shear failure surface. For validation purposes, the assessed
values of selected parameters are compared against those obtained through traditional de-
structive tests performed on the green bodies. Furthermore, parameters obtained through
the inverse analysis procedure are used as inputs for “direct” analysis (i.e., numerical
simulation of the compaction test), with complex geometries in order to generate force
vs. displacement curves, which are subsequently compared to the experimental ones. A
similar comparison was also included in [23]. The verification geometry used there was a
hollow cylinder while the one used for calibration was a flat cylinder. Such a comparison
may result in a pre-conditionally good match, due to a fairly similar stress state distri-
bution over the sample. To test the procedure in a more demanding stress distribution,
here, three different shapes are considered for comparative purposes. The comparative
analysis serves as a quantitative basis for the discussion of advantages and limitations of
the proposed method.
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2. Modified Drucker–Prager Cap Constitutive Model and Relevant Parameters

The material model adopted in the present study is a modified DPC model, as pro-
posed by several authors [13–15]. In addition to the version implemented in commercial
software ABAQUS [25], a modification of the model is employed by defining the governing
parameters as a function of volumetric plastic strain, which, in turn, can be related to the
relative density of a specimen. The modification is introduced through a user subroutine
(USDFLD) available in ABAQUS, to formulate solution-dependent parameters.

The DPC yield surface is enclosed by three surfaces: a shear conical surface (present
in classic form of DP yield criterion), an elliptical surface (called “cap”) and a transition
surface between the two, for establishing a smooth transition in order to avoid numerical in-
stabilities. The yield condition consists of three separate equations: fs(σ), fC(σ) and fT(σ)
(letters in subscript refer to shear surface, cap surface and transition surface, respectively):

fs(σ) = q− tan(β)p− d = 0 (1)

fC(σ) =

√
(p− pa)

2 +

[
R·q

1 + α− α/cosβ

]2
− R(d + patanβ) = 0 (2)

fT(σ) =

√
(p− pa)

2 +

[
q−

(
1− α

cosβ

)
(d + patanβ)

]2
− R(d + patanβ) = 0 (3)

where p and q are hydrostatic pressure and the equivalent von Mises stress, respectively.
Assuming the associate plastic flow rule on cap, and non-associative on the shear surface
and transition surface, the DPC model is completely defined by quantifying five constitutive
parameters used within the yield condition given by (1)–(3): the material cohesion d and
friction angle β required to define shear surface, the “cap eccentricity” R and the evolution
pressure pa (or alternatively, the hydrostatic pressure yield stress pb, see Figure 1) to define
the shape and position of the elliptical cap and parameter α that governs the transition
region (i.e., the connection between the cap and shear failure surface).

Materials 2021, 14, x FOR PEER REVIEW 4 of 19 
 

 

2. Modified Drucker–Prager Cap Constitutive Model and Relevant Parameters 
The material model adopted in the present study is a modified DPC model, as pro-

posed by several authors [13–15]. In addition to the version implemented in commercial 
software ABAQUS [25], a modification of the model is employed by defining the gov-
erning parameters as a function of volumetric plastic strain, which, in turn, can be related 
to the relative density of a specimen. The modification is introduced through a user 
subroutine (USDFLD) available in ABAQUS, to formulate solution-dependent parame-
ters. 

The DPC yield surface is enclosed by three surfaces: a shear conical surface (present 
in classic form of DP yield criterion), an elliptical surface (called “cap”) and a transition 
surface between the two, for establishing a smooth transition in order to avoid numerical 
instabilities. The yield condition consists of three separate equations:	 ,  and 

 (letters in subscript refer to shear surface, cap surface and transition surface, re-
spectively): − tan − 0 (1)

− ∙1 − ⁄ − 0 (2)

− − 1− − 0 (3)

where p and q are hydrostatic pressure and the equivalent von Mises stress, respectively. 
Assuming the associate plastic flow rule on cap, and non-associative on the shear surface 
and transition surface, the DPC model is completely defined by quantifying five consti-
tutive parameters used within the yield condition given by (1)–(3): the material cohesion 
d and friction angle β required to define shear surface, the “cap eccentricity” R and the 
evolution pressure pa (or alternatively, the hydrostatic pressure yield stress pb, see Figure 
1) to define the shape and position of the elliptical cap and parameter α that governs the 
transition region (i.e., the connection between the cap and shear failure surface). 

 
Figure 1. Drucker–Prager Cap yield surface in meridian plane. 

Particularization of the above outlined model adopted in this study is related to the 
implementation of parameter evolution within the compaction process. In a typical the-
ory of plasticity jargon, the change in yield criterion governing parameters with accu-

Figure 1. Drucker–Prager Cap yield surface in meridian plane.

Particularization of the above outlined model adopted in this study is related to the
implementation of parameter evolution within the compaction process. In a typical theory
of plasticity jargon, the change in yield criterion governing parameters with accumulated
plastic strain is referred to as “hardening”. In the present study, a specific form of hardening
is introduced, where parameters are assumed to depend on relative density. Volumetric
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plastic strain, taken as an internal variable on which governing parameters depend, is
related to the relative density through the following equation:

εV
p = ln

(
ρ

ρ0

)
(4)

where ρ and ρ0 represent the current and initial (i.e., corresponding to zero plastic strain) rel-
ative density. Unlike the other studies [14–16,20,24] that used some form of modified DPC
model, more extended modification is proposed here. The adopted relationship between
parameters and relative density is proposed by the following exponential dependency:

P(ρ) = (P1 − P0)

(
ρ− ρ0

ρ1 − ρ0

)n
+ P0 (5)

where ρ0 and ρ1 are fixed values of relative density (specifically 0.5 and 0.95 respectively)
while P0 and P1 are corresponding values of a particular parameter at these relative
densities, and n is the exponent. Through Equation (5), the dependency of four plastic
parameters (namely d, β, R, pb) on relative density is introduced, while for the transition
radius (α), a constant value of 0.025 is assumed, as this parameter proved to have a marginal
effect on simulated test output, and is introduced for numerical stabilization purposes. The
selection of this value is motivated by the suggestion given in ABAQUS User’s Manual [25]
regarding its range: specifically, between 0.01 and 0.05. The same dependency on relative
density is also assumed for the elastic parameters, Young’s modulus (E) and Poisson’s
ratio (ν).

The above outlined definition of constitutive parameters as a function of solution-
dependent field variable formulates the modified DPC model. The model takes into account
the elasto-plastic coupling, while implemented hardening on plastic parameters is general
enough to account for both linear and exponential relations, governed by the parameter n,
subjected to the identification together with other parameters. Unlike the most common
form of the DPC model, here, the adopted modification defines hardening, which also
affects the shear failure surface, which becomes important for certain powders (see [24]).

The identification procedure proposed here consists of the assessment of three values
for each of four plastic and two elastic material parameters: its value at low density, at high
density and the exponent of transition (quantities P0, P1 and n in the Equation (5)). The
coefficient of the Coulomb friction between the die wall and specimen is also subjected
to the identification. In most previous studies, its value was assumed as a priori known
(see e.g., [14,20]). It is evidenced in the literature that friction strongly affects the force–
displacement curve measured during the compaction test (see [26] and references therein).
Within the proposed method, it is possible to include the friction coefficient among the set
of sought parameters, resulting in more accurate material parameter quantifications, with
no special care required in the experiment to reduce the influence of friction (such as the
one proposed in [14]).

3. Material Parameter Quantification Based on Inverse Analysis

The identification procedure proposed here is centered on the minimization of the
suitable discrepancy function, which quantifies the difference between experimentally mea-
sured quantities and their numerically computed counterparts. In a purely deterministic
context, this function is formulated as:

ω(p) = [ue − u(p)]T [ue − u(p)] (6)

with experimentally measured quantities collected in vector ue, and corresponding com-
puted values forming the vector u(p), that, through test simulations, are related to the
vector of parameters p. The selection of measurable quantities is motivated by sensitivity
analyses, described in the following section. The resulting minimization problem is solved
on the basis of an iterative mathematical programming algorithm relying on a trust region
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(TR) strategy. Such an algorithm is fairly effective when the function to be minimized is
convex (i.e., is not featured by large number of local minima), which proves to be the case
in the present context. The main features of the TR applied here are briefly outlined in
what follows, while the reader should refer to [27,28] for details.

The iterative sequence starts by attributing to the parameters certain “guess” values.
In this initialization point (pk), first, derivatives are computed through finite differences
(i.e., by separately perturbing each of the parameters). The model function is generated as
a quadratic approximation of the discrepancy function, based on a computed gradient, and
second derivatives are approximated through a Jacobean, namely:

ωk(pk) = ω(pk) + pT
k ∇ω(pk) +

1
2

pT
k∇

2ω(pk)pk, where ∇2ω(pk) = JTJ (7)

The selected optimization algorithm relies on the calculation of first derivatives and the
approximation of second derivatives, which tend to be fairly accurate within the vicinity
of the solution (see [28]). It provides an almost quadratic convergence and generally
outperforms direct search methods, such as the Nelder–Mead method applied in [22].

The minimization of the model function within the bounds of the trust region leads to
a new parameter vector corresponding to the reduced value of the discrepancy function.
In the new point in the parameter space, the model function is again constructed, where
the process iteratively repeats upon reaching the prescribed convergence criteria. For
the effective implementation of this identification procedure, two aspects are crucial:
the sensitivity of measurable quantities to sought parameters, and the verification of
uniqueness of the obtained solution.

3.1. Experiment Configuration and Selection of Measurable Quantities

The experiment is performed on a pressing machine, visualized in Figure 2, while
the geometry of the formed green body can be an arbitrary one. A typical output of the
compaction experiment is a force vs. displacement curve, with the form as shown in
Figure 3. The simplest possible shape to consider is cylindrical, schematically presented
in Figure 2b.
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ments; (b) schematic representation of cylindrical greed body with pressure sensor locations.

The inverse problem constructed by considering the force vs. displacement curve
taken from the compaction of a cylindrical sample as experimental data proves to be
ill-posed, where the discrepancy function does not have only one well-defined global
minimum. Therefore, the iterative TR procedure converges to fairly different parameter
sets when starting from diverse initialization points, with all converged sets fitting the
experimental curve well. Figure 3 shows two representative examples, comparing the
computed response with the experimental one, which corresponds to the parameter sets
obtained by solving the inverse problem with two different initializations. Both of these
parameter sets are valid solutions to the inverse problem, since they both minimize the
discrepancy function to the same extent. Neither of the two parameter sets are represen-
tative material parameter sets, due to the considerable difference in parameter values. In
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Table 1, the selected parameter values from the two sets are shown, corresponding to the
parameters with the largest difference.
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Previous considerations corroborate the conclusion that the selected experiment is
too simple to be used for calibration of the considered model, mainly caused by the fact
that the sample shape produces an almost uniform stress distribution within the sample. It
is therefore desirable to define the shapes of the tested green bodies in order to provoke
a more heterogeneous stress distribution. The selection of the shape is motivated on the
basis of the results of the sensitivity analysis performed through test simulations.

Table 1. Selected parameter values assessed through inverse analysis procedure based only on
force–displacement curve from compaction of cylindrical green body.

Cohesion (d)
P0 [MPa] P1 [MPa]

Hydrostatic Yield Stress (pb)
P0 [MPa] P1 [MPa]

Initialization 1 0.494 2.414 0.181 44.081

Initialization 2 0.435 3.087 0.149 25.933

3.2. Sensitivity Analysis and Proposed Test Configurations

Given the large complexity of the considered constitutive model, the regularization of
the inverse problem is achieved through the simultaneous use of multiple experimental con-
figurations. Aside from the simple cylindrical shape, hereafter referred to as configuration
1, additional configurations are proposed.

The major difficulty related to the sole use of configuration 1 is that the shear compo-
nent of the stress in the whole specimen is negligibly small. Hence, the specimen response
to this test is not influenced by shear failure surface parameters. To circumvent this short-
coming, a configuration presented in Figure 4b (hereafter referred to as configuration 2) is
selected, where the zone is within the specimen with a dominant shear component of stress.
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The quantification of the sensitivity of measurable quantities from the test, with respect
to shear failure surface parameters, is achieved by performing a sensitivity analysis in its
traditional meaning (see e.g., [29,30]). Specifically, it is provided through the computation
of a partial derivative of a specific measurable quantity, with respect to a sought parameter.
Therefore, the sensitivity of measurable quantity qi, with respect to the parameter pj,
expressed as a normalized and dimensionless value, is computed through:

Sij =
∂qi
∂pj
·
pj

qj
(8)

Comparative results confirm a significantly larger sensitivity, with respect to the shear
failure surface parameters, of measurable quantities collected from the test with config-
uration 2 than those from configuration 1. Table 2 visualizes results regarding cohesion
at a relative density of 0.95. Results consider three measurable quantities: displacement
values corresponding to 20%, 50% and 100% of the maximum test force within the test
(see Figure 5). The derivatives are computed through finite forward differences, perturbing
the parameters by 10%. Similar results are obtained for the friction angle (β), exhibiting an
approximately one order of magnitude larger sensitivity related to measurable quantities
collected from configuration 2.

Table 2. Sensitivity of measurable quantities to cohesion (d) at relative density 0.95.

Measurable Quantity q1 q2 q3

Initialization 1 0.0040 0.0096 0.0234

Initialization 2 0.0668 0.0866 0.1551
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In order to ensure the influence of all sought parameters on the measurable quantities
from the test, it is important to make the stress field over the specimen strongly non-uniform.
For this purpose, configuration 3, illustrated in Figure 4c is adopted. Numerical simulations
of the tests employing three configurations visualized in Figure 4 are performed in order
to verify the achieved result. Figure 6 shows the stress distribution over the samples
corresponding to three selected configurations at the end of the compaction process. The
distributions of the stress components σ22 and σ12 are visualized for all three configurations.
The different material points of the stress “paths” that are passing through the compaction
process are compared for all three configurations. The results are summarized in Figure 7,
showing the stress path for three material points (with their location pointed in the figure).
From these figures, it can be seen that the stress distribution is significantly more non-
uniform in configurations 2 and 3 than in configuration 1, with the largest diversity of
stress paths between considered material points obtained in configuration 3.

Numerical simulations, which led to the results given in Figures 6 and 7, are performed
in a frictionless regime in order to comparatively investigate the influence of the specimen
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geometry only. It is evidenced in the literature that the effect of friction between the powder
and die wall influences the stress distribution, and, consequently, the measured force–
displacement curve [14,31]. The assessment of the correct value of the friction coefficient is
therefore rather important. In the present study, it is subjected to the identification together
with other parameters. To capture the information about the vertical stress gradient
(i.e., along the compaction axis), radial stresses are measured in three points along the
height of the die at its outer surface (see Figure 2).

The results of the above investigations led to the formulation of a calibration protocol,
briefly outlined as follows:

1. Three compaction tests are performed by employing test configurations shown in
Figure 4. From all three tests, force vs. displacement curves are collected together
with radial stresses measured at three different points at the outer surface of the mold
(see Figure 2);

2. Computer simulations of the three tests are carried out in order to generate the
computed counterpart of the above measured quantities. From each test, 100 displace-
ments corresponding to 100 equally spaced force levels starting from zero up to the
maximum value used in the test are collected, with 100 radial stress values for each of
the three measuring points, corresponding to the same 100 force levels. An account is
taken of the normalization for the diverse orders of magnitude of different entries;

3. A discrepancy function is constructed in the form given by (6), using the experimen-
tally measured and numerically computed quantities, collected in vectors ue and
u(p), respectively.

4. The formulated minimization problem is solved by employing the iterative TR algo-
rithm described earlier. In view of the possible local non-convexity of the discrepancy
function, resulting in convergence to a local minimum, the reliability of the solution
achieved after the TR convergence can be verified by performing the minimization
with diverse initializations.

The proposed calibration protocol represents a good framework to assess representa-
tive material parameters on the basis of experimentally measured data. Representative here
means that the material properties assessed through the proposed identification procedure
can give a reliable numerical simulation of an arbitrary geometry of the green body, which
is verified and presented in Section 5. Data required as inputs for the outlined procedure
are collected from the experiments performed on alumina powder. Details of the employed
experiments and used materials are given in the following section.
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4. Materials and Experiments

The studied material is a mixture of hard alumina particles and graphite leaf embed-
ded into a soft carbonic matrix. The alumina and graphite volumetric ratios are equal to
40% each, with 20% of binder used. At the end of the mixing process, millimetric compos-
ite pellets are obtained. The microstructure of pressed powder is visualized in Figure 8,
evidencing a homogeneous repartition of the mixture compounds.

The powder was loaded into a stainless steel die and then compacted uniaxially with
a constant velocity of 1.5 mm/s. For studied powder, no strain-rate effects were noticed for
this range of compaction velocity. The instrumented tooling used in this work is presented
in Figure 2. The device deformation during calibration test was measured up to 200 MPa
and eliminated from the results in order to extract just the intrinsic behavior of tested
powder. This was achieved by employing the procedure described in [32]. No special
care was taken within the experiment to reduce the friction, with friction coefficient also
subjected to the identification.
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To measure radial stresses, three strain gages were glued to the die at different levels
(see Figure 2). Measured radial deformation is related to the pressure the sample transferred
to the internal radial die surface. “Calibration” of the measurement was carried out on the
basis of pressing experiments on rubber samples with different heights, assuming to have
Poisson’s ratio of almost ν = 0.5, and therefore being incompressible. The calibration was
performed up to the axial stress value of 200 MPa.

In order to establish reference values for selected parameters for comparative purposes,
where this procedure is described in [14], the reliance on destructive tests of green bodies
was employed. A series of cylindrical samples with different values of relative density
were prepared. Samples with height to diameter ratio of 2:1 were tested with unconfined
compression test (i.e., crash test), while samples with height to diameter ratio of 1:2 were
subjected to Brazilian test (see Figure 9). On the basis of these tests, parameters defining
shear failure surface were evaluated through following formulae:

d =
σCσb

(√
13− 2

)
σC − 2σb

(9)

β = atan
[

3(σC − d)
σC

]
(10)

where σC and σb are values assessed from crush test and Brazilian test, respectively, corre-
sponding to failure force recorder at the test.

Once d and β were identified, cap surface parameters were evaluated by performing
compression tests at several pressure levels and recording both axial and radial stresses.
From these measurements, hydrostatic pressure p and equivalent von Mises stress q were
computed, in order to identify the (p, q) point. The assessed point was on the cap surface, as
yielding was active, providing one equation for the unknown quantities—cap eccentricity
(R) and evolution pressure (pa). The second equation was obtained from the flow rule,
assumed to be associative (i.e., plastic flow is perpendicular to the yield surface), usually
adopted on the cap surface (see e.g., [14,26,33]), which yielded:

R =

√
(p− pa)

2(1 + α− α/cosβ)2

3q
(11)
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The outlined calculations led to the quantification of the listed four parameters cor-
responding to different relative densities. Here specifically, considered relative densities
were: 0.73, 0.78, 0.83, 0.88 and 0.93. These values were further treated as “reference values”
for verification purposes, regarding the estimates resulting from the proposed procedure.
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5. Assessment of Modified DPC Model Parameters Through Proposed Inverse
Analysis Procedure

The presented inverse analysis procedure was employed in order to assess parameters
entering the modified DPC model using data collected from the compaction experiments by
three different configurations (visualized in Figure 4) as inputs. From each experiment, the
force–displacement curve and radial stress measurements in three points along the height
are considered as measurable quantities. The formulated minimization problem turned
out to be well-posed, and therefore efficiently solved by the trust region (TR) algorithm.
A modified form of the “dog-leg” TR algorithm is employed here, with details of its
numerical implementation given in [28]. The iterative minimization process involved up
to 10 iterations in order to converge to the global minimum, evidenced by a good fit of
experimental curves, as shown in Figure 10. Minimization was performed several times,
starting from different initial values and converging all the time to the same parameter set.
The convergence plots of the TR for the selected two parameters are visualized in Figure 11.
Figure 12 shows the reduction of the objective function throughout iterations. The objective
function is computed by employing Equation (3), where different quantities (i.e., the force–
displacement curve and force–pressure curve) are accounted for through normalization.
Other parameters (not shown here for brevity) evidenced similar convergence trends. The
values of the parameters representing the solution of the inverse problem are listed in
Table 3. For each parameter, the initial value, the final value and the exponent of the
transition are given (see Equation (5)).

Table 3. Parameters assessed through inverse analysis procedure.

Parameter Initial Value Final Value Exponent n

Young’s modulus (E): 0.247 [GPa] 2.907 [GPa] 1.577
Poisson’s ratio (ν): 0.048 0.204 3.127

Cohesion (d): 0.257 [MPa] 3.274 [MPa] 2.909
Friction angle (β): 49.64 [◦] 56.84 [◦] 1.072

Cap eccentricity (R): 0.521 0.740 0.250
Hydrostatic yield stress (pb): 0.230 [MPa] 35.581 [MPa] 3.032

Coulomb friction coefficient: 0.082

Convergence plots evidence that only seven iterations suffice to reach the global mini-
mum of the objective functions. A similar result was also achieved with other initializations.
This corroborates the conclusion of the proper selection of the minimization tool for the
resulting inverse analysis. Here, the number of simulations involved in order to reach the
result of the inverse analysis is approximately two orders of magnitude smaller than if, for
example, artificial neural networks (ANN) were used, such as in [23]. As ANN involve a
relatively large number of simulations for the phase of “training”, they, in general, involve
a significantly larger number of simulations than mathematical programming algorithms.
An alternative way of solving the resulting inverse problem could be by employing the
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adaptive collocation strategy within ANN, such as in [34]. To the best of our knowledge,
such an approach is not yet applied within the context studied here.
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The selected parameters are compared against the reference values assessed through
the procedure briefly outlined in Section 4. The comparisons are visualized in Figure 13.
From the figure, it may be observed that for each considered parameter, the evolution with
relative density is well captured. It is worth noting that the proposed parameter transition,
given by (5), proves to be general enough to resemble both the exponential trend (observed
for parameters d, pb, etc.) and the linear one (observed for parameter β).

Further comparative checks consisted of performing additional experiments and
related numerical simulations, regarding the die/punch geometries that were different
from those used within the calibration tests. To this purpose, three configurations were
produced (see Figure 14) and employed within the compaction tests, which led to three
additional force–displacement curves. The numerical simulations of all three compaction
tests were performed attributing to the parameter values listed in Table 3. The comparisons
of the experimental and numerical curves are visualized in Figure 15, showing extremely
good agreement, corroborating the conclusion that the parameters assessed on the ba-
sis of the proposed inverse analysis procedure can indeed be treated as representative
material parameters.
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6. Conclusions

Complex constitutive models with a large number of governing parameters are fre-
quently employed within the simulations of the ceramic powder compaction process. The
calibration of such models through inverse analysis methodology proved to be rather
promising, offering greater flexibility with respect to conventional testing methods. With
the examples treated in this paper, it was demonstrated that parameters can be assessed



Materials 2021, 14, 4044 18 of 19

directly as a function of relative density, exploiting a significantly smaller amount of exper-
imental data compared to destructive tests performed on green bodies. Such an outcome
may be advantageous from an industrial perspective, since it is more robust and economi-
cal, while, at the same time, it provides data for a wider range of relative densities. Within
the examples treated in this paper, it was evidenced that the parameters are assessed con-
sidering a relative density starting from 0.5 up to 0.95. When assessing the same parameters
through more laborious destructive tests, a larger number of experiments are required,
with an additional limitation related to the difficulty in producing and testing green bodies
with a low relative density (approximately 0.7 for the alumina powder tested here). Such a
circumstance implies the need to perform an extrapolation of the assessed values outside
of the treated range, potentially introducing additional errors to the estimates. With the
proposed procedure based on an inverse analysis, such a limitation does not exist, while
the parameters are assessed in a continuous manner over the complete range of relative
densities considered in the compaction experiment.

Examples treated in this paper demonstrate that the proposed method offers a sys-
tematic framework for identifying representative material parameters, avoiding particular
solutions that are capable of fitting only a single experiment. Such a result is ascertained
by considering different geometries within the calibration phase, and, hence, stimulating
large differences between stress states within the samples. The validity of the assessed
properties is verified by comparing numerical and experimental curves from arbitrary
shapes of die/punch configurations, which proved to be in excellent agreement.

Further developments currently in progress concern the comparisons of numerically
predicted relative density distributions with the experimentally measured one. Such a
quantity can be assessed through X-ray computed tomography measurements.
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