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Abstract 

The purpose of this paper is to present study of creep 
behaviour of a rotating disc in the presence of load and 
thickness by using Seth’s transition theory. It has been 
observed that a flat rotating disc made of compressible as 
well as incompressible material with load E1 = 10, increases 
the possibility of fracture at the bore. It Is also shown that a 
rotating disc of incompressible material and thickness that 
increases radially experiences higher creep rates at the 
internal surface in comparison to a disc of compressible 
material. The model proposed in this paper is used in 
mechanical and electronic devices. They have extensive 
practical engineering applications such as in steam and gas 
turbines, turbo generators, flywheel of internal combustion 
engines, turbojet engines, reciprocating engines, centrifu-
gal compressors and brake discs. 

Ključne reči 
• napon puzanja 
• brzina deformacije 
• ugaona brzina 
• opterećenje 
• disk 

Izvod 

U radu je predstavljena studija puzanja rotirajućeg 
diska datog opterećenja i deblјine primenom Setove teorije 
prelaznih napona. Uočeno je da ravan rotirajući disk 
napravlјen od stišljivog, odnosno, nestišlјivog materijala sa 
opterećenjem E1 = 10, povećava mogućnost pojave loma na 
otvoru. Takođe je pokazano da rotirajući disk od nestišlji-
vog materijala, sa radijalnim porastom deblјine povećanje 
ima veću brzinu puzanja na unutrašnjoj površini, u odnosu 
na disk napravlјen od stislјivog materijala. Model predlo-
žen u ovom radu se koristi u mehaničkim i električnim 
uređajima i ima širu praktičnu primenu, na primer, parne i 
gasne turbine, turbogeneratori, zamajac motora sa unu-
trašnjim sagorevanjem, turbomlazni motori, klipni motori, 
centrifugalni kompresori i kočioni diskovi. 

 

INTRODUCTION 

Machine components in most sophisticated equipment and 
automated industry line machines are under the persistent 
influence of centrifugal force. These machine components 
may be in the form of solid, annular discs, gears, plates, 
crank-shafts, ball bearings, solid or hollow tubular 
structures etc. Being in the continuous state of stress, no 
matter what kind of material these components are made of, 
there is a likely deformation in their structure. Designers of 
such machines have always tried to use specific materials in 
their manufacture pertaining to the kind of stress they will 
experience in the fully functional system. Isotropic, aniso-
tropic and orthotropic materials have been used from time 
to time in their manufacture. The description of their defor-
mation is given by a different set of equations for elastic, 
plastic and creep state and can be found in standard text-
books, /4-8, 11/. Gupta et al. /9/ analysed creep transition in 

a thin rotating disc with rigid inclusion by using the Seth 
transition theory. Thakur /15, 26/ investigated creep tran-
sition stresses in a thin rotating disc with a shaft by finite 
deformation under steady state temperature, by using Seth 
theory and further extended his investigations on thermal 
creep stresses and strain rates in a circular disc with a shaft 
having variable density. Seth transition theory utilizes the 
concept of generalized strain measure and asymptotic solu-
tion at critical points or turning points of the differential 
equations defining the field, and has been successfully 
applied to a large number of problems /2, 3, 9, 12, 15-36/. 

Seth /2/ has defined the generalized principal strain 
measure as: 
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where: n is the measure; and 
A

iie  are principal Almansi 
finite strain components. The disc thickness is assumed to 
vary along the radius in the form: 

 0 ( / ) kH H r b −=  (2) 
where: H0 is the thickness at r = b; and k is the thickness 
parameter. In this paper, we investigate creep behaviour of 
a rotating disc in the presence of load and thickness by 
using Seth’s transition theory. Results are discussed and 
depicted graphically. 

GOVERINING EQUATIONS 

Consider a thin rotating disc of variable thickness with a 
central bore of inner radius a and outer radius b, respec-
tively. The disc is rotating with angular speed ω of gradu-
ally increasing magnitude about an axis perpendicular to its 
plane and passing through the centre. The density of the 
disc is assumed to be constant and is taken sufficiently 
small so that the disc is effectively in a state of plane stress, 
that is, the axial stress Tzz is zero. 
Displacement coordinate: the displacement components in 
cylindrical coordinate are given by /3/: 
 (1 ),  0,  u r v w dzβ= − = = , (3) 

where: u, v, w are displacement components; β is position 
function, depending on r = 2 2x y+  only; and d is a 
constant. Finite components of strain are given by /3/ as: 
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where:β′ = dβ/dr. Substituting Eq.(4) into Eq.(1), the gen-
eralized components of strain are given: 
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where: r, θ, z are polar coordinates; and β′ = dβ/dr. 
Stress-strain relation: stress-strain relations for isotropic 
material are given by /1/: 
 1 2   ( ),  1,  2,  3ij ij ijT i jI eλδ µ= + =  (6) 

where: Tij and eij are the stress, strain components; λ and µ 
are Lame’s constants; I1 = ekk is the first strain invariant; δij 
is the Kronecker’s delta. Using Eq.(5) in Eq.(6), the stress 
components are obtained as: 
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where: P (i.e. function of β, and β is the function of r); and 
c is the compressibility factor of the material. 

Equation of equilibrium: the equilibrium equations for the 
rotating disc are given by: 

 2 2( ) ( ) 0rr rr
dr HT H T T r H
dr θθ ρω+ − + =  (8) 

where: ρ is the constant material density; ω is angular 
speed; Trr and Tθθ are the radial and circumferential stress 
of the disc. 
Critical points or turning points: substituting Eq.(7) and 
Eq.(2) into Eq.(8), we get a nonlinear differential equation 
in β as: 

{
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 (9) 

where: rβ′ = βP. Turning points of β in Eq.(9) are P → ±∞, 
P → –1, P → –1. 
Boundary conditions: the boundary condition is: 
 Trr = 0  at  r = a  and  Trr = T0  at  r = b. (10)  
where: T0 is the applied load at the external surface of the 
rotating disc. 

SOLUTION OF THE PROBLEM 

Several authors solved many problems of the disc by 
using different methods. Hojjati et al. /13/ applied theoreti-
cal and numerical methods for stress-strain analysis of 
rotating disc with non-uniform thickness and density sub-
jected to only centrifugal body loadings. They employed 
elastic-linear strain hardening material to analyse the rotat-
ing disc by VMP, Runge-Kutta’s and Finite element 
methods. Hojjati et al. /10, 13, 14/ solved the elastic-plastic 
problem of the disc by using Variational iteration method, 
Homotopy perturbation method, and a Domain decomposi-
tion method. In this paper, we apply the Seth method to 
solve creep deformation in the disc. For finding the creep 
deformation, the transition function is taken through princi-
pal stress difference (see /2, 3, 9, 12, 15-36/) at the turning 
point P → –1. We define the transition function ℑ as: 

 2 1 ( 1)
n

n
rrT T P

nθθ
µβ  ℑ = − = − +   (11) 

where: ℑ is a function of r only. 
By taking the logarithmic differentiation of Eq.(11) with 

respect to r and using Eq.(9) and taking the asymptotic 
value P → –1, we get: 
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where: ν = 1 – c/2 – c  is the Poisson ratio. 
Asymptotic value of β as P → –1 is D/r and D being a 

constant. Integrating Eq.(12) with respect to r, we get 
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 expB
rrT T Ar h Fν

θθℑ = − = , (13) 
where: A is a constant of integration, which can be deter-
mined by using boundary conditions and  

 (3 2 ) 1
(2 )

n cB
c

− +
= −

−
 and  

 
21 (3 2 )

2(2 )
n

n
h n rF c r dr
hc D

ρω
µ

 ′
= − − + 

−   
∫ . 

Using Eqs.(13) and (8), we get: 
 2

1rrHT A A Fdr rHdr= − − ρω∫ ∫  (14) 

where: A1 is a constant of integration; and F1 = rB1–1Hν+1expF. 
By using Eq.(10) into Eq.(14), we get 
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Substituting the value of constants A and A1 into Eq.(14), 
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Using Eq.(15) in Eq.(13),  
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Non-dimensional components: we introduce the following 
non-dimensional components: R = r/b, R0 = a/b, σr = Trr/E, 
σθ = Tθθ/E, E1 = T0/E and Ω2 = ρω2b2/E. Creep transitional 
stresses, Eqs.(15) and (16), in non-dimensional form become: 
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The disc made of incompressible material (ν → 1/2 or 

C = 0), Eqs.(17) and (18) become: 
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CREEP DEFORMATION PARAMETER 

When the creep sets in, the strains should be replaced by 
strain rates. The stress-strain, /1/, becomes: 

 1
ij ij ije T T

E E
ν ν δ+

= − , (21) 

where: eij is the strain rate tensor with respect to flow param-
eter t and T = Tii be first stress invariant and ν = (1 – C)/(2 – C) 
is Possion’s ratio. Differentiating Eq.(5) w.r.t. time, t, 

 1neθθ β β−= − 

 . (22) 
For SWAINGER measure (i.e. n = 1), Eq.(21)) becomes: 

 θθε β=  , (23) 

where: θθε  is the SWAINGER strain measure. From Eq.(11) 
the transition value β is given at transition point P → –1 by: 

 1/1/( / 2 ) nn
rrn T Tθθβ µ= −   . (24) 

Using Eqs.(22), (23) and (24) in Eq.(21), we get 
[ ]rr r θε η σ νσ= − , [ ]rθθ θε η σ νσ= − , ( )rϕϕ θε ην σ σ= − +  (25) 

where: rrε , θθε  and zzε  are strain rate tensor, and 
1 1( )(1 ) nrn θη σ σ ν −= − +   . 

For fully plastic states (ν → 1/2 or C = 0), Eq.(25) 
becomes: 

1
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These constitutive equations are same as obtained by /4/ 
for finding the creep stresses, provided we put n = 1/N and 
N be the measure. 

NUMERICAL ILLUSTRATION AND DISCUSION 

For calculating creep strain rates based on the above anal-
ysis, the following values have been taken Ω2 = 10, 50; n = 
1/3, 1/5, 1/7 (i.e. N = 3, 5, 7); ν = 0.5 (incompressible mate-
rial), i.e. rubber /1/); ν = 0.3 (compressible materials, i.e. 
copper, /1/); k  = 0, 0.5, 0.7, E1 = 0.01, 10; and D = 1. 
Definite integrals in Eqs.(17) and (18) have been solved by 
using Simpson’s 1/3rd rule. Curves are drawn between 
stresses and radii ratio R = r/b (see Figs. 1-3) for the rotat-
ing disc made of compressible as well as incompressible 
material, having variable thickness and different angular 
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speed. For E1 = 0.01, as seen from Fig. 1 the circumferen-
tial stress is maximal at the internal surface of flat disc (k = 
0) made of compressible material for measure n = 1/3 (or 
N = 3) at different angular speed. The value of this circum-
ferential stress decreases for measure n = 1/5, 1/7 (or N = 5, 

7). For E1 = 10, as seen from Fig. 1 the circumferential 
stress has much higher values at the internal surface in 
comparison to E1 = 0.01. It means that a flat disc made of 
compressible as well as incompressible material with load 
E1 = 10, has an increased possibility of fracture at the bore. 

Sigma r = σr, Sigma theta = σθ 

Ω2 = 10 
ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

     

        
Ω2 = 50 

ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

     

    
Figure 1. Creep stresses in a thin rotating disc without thickness (k = 0) and angular speed Ω2 = 10, 50 along the radius (R = r/b). 
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As seen from Figs. 2-3, that for a rotating disc of incom-
pressible material whose thickness increases radially (k = 
0.5, 0.7) and E1 = 10, the circumferential stress is maximal 
at the internal surface for measure n = 1/7 (or N = 7) in com-

parison to a disc of compressible material, and this value of 
circumferential stress decreases as the measure decreases. 
For E1 = 10, the circumferential stress has much higher 
values at the internal surface in comparison to E1 = 0.01. 

Ω2 = 10 
ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

   
Ω2 = 50 

ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

     
Figure 2. Creep stresses in a thin rotating disc of thickness (k = 0.5) and angular speed Ω2 = 10, 50 along the radius (R = r/b). 

Curves are plotted for strain rates along the radii ratio 
R = r/b (see Fig. 4) for rotating disc of compressible mate-
rial (i.e. copper) as well as incompressible material (i.e. 
rubber) with thickness k = 0, 0.25 at angular speed Ω2 = 10 

for measure n = 1/7, 1/5, 1/3 (i.e. N = 7, 5, 3). It has been 
seen that the rotating disc of incompressible material has a 
maximal value of strain at the internal surface as compared 
to the disc of compressible material for measure n = 1/7 and 
n = 1/5, respectively. 
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Ω2 = 10 

ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

      

Ω2 = 50 

ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

   
Figure 3. Creep stresses in a thin rotating disc of thickness (k = 0.7) and angular speed Ω2 = 10, 50 along the radius (R = r/b). 
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Err = rε , Eqq = θθε , Ezz = zzε  

k = 0 
ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

     
k = 0.5 

ν = 0.333 (compressible material)    ν = 0.5 (incompressible material) 

      

Figure 4. Creep strain rate distribution in a thin disc of variable thickness k = 0, 0.5 and angular speed Ω2 = 10 for measure n = 1/7, 1/5, 
1/3 along the radius R = r/b. 
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