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This article presents free vibration analysis of structures composed of rigid
bodies connected with elastic beam segments. It is assumed that the mass

centers of rigid bodies are not located on the neutral axes of undeformed
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elastic beam segments as well as rigid bodies perform planar motion in the
same plane and their mass centers are located in that plane. For
determination of natural frequencies of the system, modification of the

conventional continuous-mass transfer matrix method has been performed.
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The elastic beam segments are treated as Euler-Bernoulli beams.
Numerical example is presented.
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1. INTRODUCTION

Many engineering structures can be modeled with a
system of rigid bodies connected with elastic am
segments, hence, free vibration analysis of these models
of structure are of crucial importance. Many papers deal
with vibration analysis of the system composed of a
single rigid body and two elastic beam segments [1-3]
as well as of the system of cantilever beam with a rigid
body attached to its free end [4-6]. In [7] two
dimensional structures composed of two-part elastic
beam-rigid body elements are analyzed by using
transfer matrix and direct approach. Vibration of hybrid
elastic beam carrying several elastic-supported rigid
bodies is analyzed in [8]. All above references consider
that the mass centers of the rigid bodies are located on
the neutral axis of elastic beams.

This paper presents the extension of the existing
results of free vibration of structures of rigid bodies
connected with elastic beam segments, but unlike
existing results, in this paper mass centers of rigid
bodies are not located on the neutral axes of elastic
beam segments. Also, all elastic beam segments are in
the same plane and during oscillations, rigid bodies
perform planar motion. For determination of natural
frequencies of the system, modification of the
conventional continuous-mass transfer matrix method
(CTMM) [9] has been performed. Performed
modification of CTMM gives the coefficients of lower-
order determinant as compared to the determinant
obtained in [9], which has importance in numerical
analysis of the systems with a large number of elastic
beam segments and rigid bodies. Theoretical apporach
of this paper is based on paper [10]. In this paper, the
case when the left side of structure is clamped and the
right side of structure is simply supported, is applied.
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But the beam is cantilevered and obtained results can be
applied easily on any type of constraints on these places.

2. SYSTEM MODELING AND EQUATIONS OF
MOTION

A system of rigid bodies (a;) connected by homogenous
elastic beam segments (BS;) is shown in Fig. 1 [10]. C;
represents the mass center of body V;, a; is the angle
between the longitudinal axes of undeformed adOjacent
segments (BS;) and (BS;,;). O; is the point of body (V))
which represents the intersection point of the
longitudinal axes of undeformed adjacent segments
(BS;) and BS;,;. Rigid bodies perform planar motions in
the plane where elastic segments are positioned. w{(z;?)
presents the transverse displacement in the y; direction

and uz;,r) presents the axial displacement in the z;
direction, where z; axe coincide with the neutral axis of
segment (BS;).

X/

i

Figure 1. Structures composed of rigid bodies connected
with elastic beams

The partial differential equations for bending and
axial vibrations of the beam segments (BSi )is [11]:

Ed oW (zi.t)+ pi Ay (z;.1)=0, i=1...n, (1)
piAii; (z;,1)— E;Au’(z;,) =0, i=1,..,n, )

where E; presents modulus of elasticity, /() is the

cross-sectional area moment of inertia about axis Xx;
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which passes trough center of the cross section, A; is
the cross-sectional area, p; is the mass density. The
beam segments are modeled as the Euler-Bernoulli
beams (rotary and shear effects are ignored) [11].
Deformations u;(z;,f) and wi(z,t) as well as rotations
w'((z;,t) are small.

Using the separation of variables method, the
displacements wi(z;,#) and u,(z;f) can be written as

w;(2,1) = W; ()T (0), 3)
ui(z;,)=U;(z;)T(t), 4

where Wi(z;) and Uz (i=1,...n) are the normal modes in
bending and axial vibrations, respectively. According to
(3) and (4), (1) and (2) can be rewritten as the following
system of 2n+1 ordinary differential equations:

V24

Wi (z)=kiWi(z)=0, i=1,...n, 5)
Ul'”(Z,')‘FpizUi(Zi):O, i=1...,n, (6)
7(t)+ &*T(t) =0, 7)

where o is the natural frequency of vibration of the
entire system and

k=LA 2 2P it e ®)
Eil () E;

1

The relation between quantities k; and p; can be seen
from (8).

L) o .
pi = %ki, i=1,..n. ©

1

Taking that k; = k and p; = /I ())A;k>, from (8) and
(9) it follows

E1 A
—4 1 )C(l)pl Ly
PIALE ;)

nd
E;l
0= / 1) 2 (1)
P14

The general solutions of (5) and (6) can be expressed
as [11]

piA (10)

W;(z;)= Cy(3) coslk;z; )+ Co(y) sin(k;z; )+
+G3(;) cosh(kl-zi )+ Ca(y) sinh(k,-z,- ), (12)
i=1,...,n,

U;(z;)= Cs(;) cos(p;z; )+ Co(s) sin(k;z; ) (13)

i=1,...,n,

3. BOUNDARY CONDITIONS

3.1 Boundary conditions at the left end beam
segment

Let the segment (BS;) be clamped at the left end B, ;.
Based on this, following boundary conditions hold:
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wi(0,1)=0, wi(0,1)=0, u(0,£)=0, (14)

which, taking into account (3), (4), (12), (13), (14) can
be written in the developed form as follows:

Cl(l) + C3(1) = O, (15)
k1C2(1) + k1C4(1) =0, (16)
C5(l) =0. (17)

The following matrix relation can be formed:
[a]=[]c] (18)

where

[C1]=[C1(1) GC) Ga) Car) Cs(1) Cﬁ(l)r’ 19)

[CO]:[CI(I) Co1) C6(1)]ra (20)
(1 0 O]
0O 1 0

[1,]= -ho o) Q1)
0 -1 0
0O 0 O
0 0 1]

3.2 Boundary conditions of the rigid body (V)

The rigid body (V;) is presented in Fig. 2 [10]. C;” and
ck

l*represents the perpendicular projections of the

mass center C; to the directions B; gO; and B;y; ;1 0;,
respectively.

Zpy

Bii,100)

Ft(m)
Figure 2. Free-body diagram of the body (V)

In further considerations the following quantities
will be used to describe the material and geometric
characteristic of the rigid bodies (V;): body mass m;,
mass moment of inertia about centroidal axis J;,

k ksk * ok
B rCi =¢;, C; By =a;, GC; =d;, CC; =D,

O0;B; g =1i1), O;Biy1,L =lj(2)- The slopes of the

displacements at the ends B; and B;,;; of the segments
(BS;) and (BS;,;) equal the angle of rotation of the body

V):
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wi (L) = iy (0.0) (22)
or, in developed form:

k; (— Cyy sink;L; + Cy(;y cosk;L; +

+ Cyg sinh ;L + Cypy cosh kL )= (23)

= ki+1(C2(i+1) + C4(i+l))

Further, according to the assumption on small elastic
deformations of the beam segments, the displacement
vector of point O; determined based on the displacement
of point B;r and the slope w';(L;t) reads

iOi ;001' =

. BT
= (Wi (Ll',l)+ Bi,ROiWi (Ll"t))]i + Ml' (Li’t)ki'

Also, the displacement vector of point O; can be
expressed through the displacement of point By, and
deflection w';, (L) as follows:

(0,),0i = (Wi+1(OJ)—Bi+1,R0in+1(0J))fi+1 + (25)
14741 (0,0 k1.
Equating (24) and (25) and taking dot product of such

obtained expression by the j; and Igl- , respectively,
yields
I/ll (Ll s[) = Ml+1 (O,t) COS al +

' . (26)
+ [wi+l (O,I) -/ i2)Witl (O,t)]sm a;,

w; (Ll"t) + f,(l)w; (Ll"t) = —Mi+1(0,t) sin a; +
) 27
+ [wi+l (O,I) - fi(Z)WH—l (O,l)]COS a;,
or in the developed form
CS(i) COS piLi + Cﬁ(i) sin piLi = CS(i+1) COS al' +
+ [CI(H—I) + G341y + (28)
—Liyki+1(Cogivny + C4(i+1))]Sin o,
Cl(i) COS kiLi + C2(i) sin kiLi + C3(i) cosh kiLi +
+ C4(i) sinh kiLi + gi(l)ki (— Cl(i) sin kiLi +
+ CZ(i) Ccos kiLi + C3(i) sinh kiLi + 29)
+ C4(i) cosh kiLi ): _CS(i+1) sin Oti + [Cl(i+1) +
+C341) — Li)kir (C2(i+1) +Cy(ivn) )]COS ;.

The angular acceleration and the acceleration of the
mass center C; of the body (V)), respectively, is

. >
& =wi1(0,0) = —07k; 4 (C2(i+1) + C4(i+1))T(f), (30)

ac; = apiy, L + & X By 1Cis (31)

where ap;y; is the acceleration of point By, and
E = 8,-17,- +1- In (31) on account of assumption about small
deformations of the segments, the term @ X@,X

B;,1,1.C; which represents normal acceleration of the mass

center C; is ignored. In that case, @, = 'i+1l?l~+1 is the
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vector of angular velocity of body (V;). Now, Newton-
Euler differential equations of motion of the body is

Jigi =M piy =My vy + Fripe; + 32)
+ Fyiyd; + Frivyai — Fuivnbis

m; iz (0,1) + byg;) = (33)
= Fu(ir1) = Faiy cos @; + Fy;y sin @,

m; (W41 (0,0) = ;) = Fyiy1) = Fyiy sin 0 = Fyjy cos 0, (34)
where F,; and F,,, are the shear forces of beam
segments (BS;) and (BS;,), respectively, defined as:

Fyiy =—Eil yywi (L. 1), (35)
Fiiv1y = —Eivil x(i+1yWiz1(0,0). (36)

F.i and F,u) are the axial forces of beam segments
(BS;) and (BS;,1), respectively, defined as:

Foiy = EiAui (L, 1), (37)
Fyir1) = Ei1Aiuiz10,1), (38)

and, finaly, My, ) and Mp; are the bending moments of
beam segments (BS;) and (BS;, ), respectively, defined as:

Mgy = _Eilx(i)wz,',(Li’t)’ (39)
M g1y = —Eil x(i41yWis1(0,1). (40)

Based on above relations, (32)-(34) can be written in a
developed form as follows:
2
-0 Jiki (Czu+1) + C4(i+1))=
2 .
= _EiIx(i)ki [— Cl(i) CcoS kiLi - C2(i) Sin kiLi +
+ C3(i) cosh kiLi + C4(i) sinh kiLi ]+
2
+ Eil yianki (— Ci+1) + G341 )+
3 .
- Eilx(i)el-kl- (Cl(t) Sin kiLi - C2(i) Ccos kiLi +
+ C3(l) Sinh kiLi + C4(l) COSh kiLi )+
+ EiAidipi (— CS(Z) sin piLi + C6(l) Cos piL')+

(41)

— Epl xisny@ikin (— Coivny + Caisny )+
= Ei1Ain1biPis1Coisny
—m@*|Csgary + bk (Copry + Caiion 1=

i 5i+1) T Oikir1\Corry + Carny )|1=
=E;1A11Pi1Cegi1) — EiAiD; -
[— Cs(l) sin piLi + C6(l) COS piLi ]COS 0{,- + (42)

3 .

- EiIx(i)ki [Cl(l) Sin kiLi - C2(i) COS kiLi +
+ C3(l) sinh kiLi + C4(l) cosh kiLi ]Sin Gb'l' .

2
m; @ [— Cii+) =G+ +

3

+aiki (Cz(m) + Cyivy )] = E; il yirnki -

(CZ(i+1) - C4(i+1))+ EiAip;- 43)
(CS(i) sin piLi - C()(i) Ccos piL-)SiIl a; +

3 .
+ EiIx(i)ki [Cl(l) s kiLi — C2(i) Cos kiLi +
+ C3(i) sinh kil‘i + C4(i) cosh kiLi ]COS Q;.
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Equations (23), (29), (30), (41), (42), and (43) can
be written in the matrix form as follows:

T;.C; = TrCiyy (44)
where C; = [Cm‘) CZ([) Cj‘(i) C4(i) C5(i) C6(i)] Cin = [C1(1+1)

T .
Coirty Csiry Cuinry Csirny Coganl' Flnally, based on
equations (44), the following recurrence relation can be
written as

Ci+1=TiCi’ i=1,...,n—l, (45)

where T;e R%® is transfer matrix between the

integration constants for beam segments (BS;) and
(BS;;1) determined as

T, =TRT,, i=1,...n-1, (46)
After n-1 successive application of the reccurence
relation (45), it can be obtained:

Cy =TT - TTHCy. (47)

3.3 Boundary conditions at the right end beam
segment

Let the segment (BS,) be simply supported at the right
end B, . Based on this, following boundary conditions
hold:

Wy (L, 1)=0, W (L,,1)=0, (48)

which, taking into account equations (3), (4), (12), (13),
(48) can be written in the developed form as follows:

Ci(n) cos(knL,1 )+ Con) sin(knLn )+

+C3(y) cosh(knLn )+ Ca(n) sinh(knLn )=0, “9)
— k Cy(n) c08(k,, L, )~ ky Cofy) sin(k,, L, )+

+ky Cs() cosh(k, L, ) + (50)
+ kg Cy()sinh(k,, L, ) = 0.

The following matrix relation can be formed:

T,C,, =03y, (51)

where
T1(n) = Ti2(n) = Th3(n) = 52)

=Ti4(n) =Ti5(n) = T11(n) =0,

T21(n) = Cos(knLn )’ T22(n) = Sin(knLn )’

T3(n) = cosh(k, L, ). Toy(,) = sinh(k,, L, ). (53)
T55() = Tae(n) =0,

T31(n) = ks cos(k, L, ),

T22 = —k Sln( nLn ),

To3(n) = k; cosh( wLy ), (54
To4(n) = ky smh(knLn ),

T55(4) = Ta6(n) = 0.
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3.4 Frequency equation and mode shapes

Taking into account (47), it follows from (51) that
TCO = 03><1 (55)
R3><3

where Te represents overall transfer matrix
determined by the following expression:

T=T,T, - TT,. (56)

Eq. (53) represents a matrix form of the
homogeneous system of equations for unknown
components of the matrix Cg. In order that this system

can have non-trivial solutions, it is needed to hold that

detT = 0. (57)

4. NUMERICAL EXAMPLE

In this example, rigid body with two elastic beam
segments is considered (Fig. 3). The beam segments
have circular cross section and the rigid body has square
cross section. The following values of the system are
used: Young's modulus E| = E, = 2.069x10" N/m?, mass
destiny p; = p, = 7500 kg/m®, diameters of the beam
segments D; = D, = 0.05m, length of the beam segments
L, = L, = 1m, mass of the rigid body m = 50kg,
dimension of the rigid body a = 0.3m.

The first four mode shapes are presented in Figures
4,5, 6, 7. Figure 8 shows the effect of angle a on the
first four coefficients k. The characteristic equation for
angle a = n/4 is presented in Figures 9, 10, 11, 12.
Determined coefficients k from these figures, as well as
first four lowest natural frequencies w are presented in
table 1.

N ] (BSI)

N L

Figure 3. Rigid body with two elastic segments

Figure 4. The first mode shape
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Figure 5. The second mode shape

Figure 6. The third mode shape

Figure 7. The fourth mode shape
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Figure 8. The effect of angle a on the coefficients k
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Figure 9. Characteristic equation (determination of ki)

FME Transactions

1500 2N
1000 \

500 - \

=500 -

—-1000 -

~1500 F \

Figure 10. Characteristic equation (determination of k,)
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Figure 11. Characteristic equation (determination of k;)
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Figure 12. Characteristic equation (determination of k)

Table 1. The first four natural frequency of the system

Mode k o [rad/s]
1 1.24 89.46
2 3.16 580.96
3 4.57 1215.08
4 7.22 3032.83

5. CONCLUSION

Free vibrations of structures composed of rigid bodies
connected with elastic beam segments are presented in this
paper. It is assumed that mass centres of rigid bodies are
not located on the neutral axes of elastic beam segments.
For determination of natural frequencies of the system,
modification of the conventional continuous-mass transfer
matrix method (CTMM) [9] has been performed. The
matrix Tcan be formed by using software tools like
MatLab and Mathematica. Also, using the procedure
developed in this paper, with the help of software tools, it
can be found easily the solution of equation detT =0.in
the analytical form. This provides possibility to analyze
dependence on frequencies of any parameter of a given
system. Numerical example is provided in order to
represent possibilities of the developed procedure.
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of Vibrations,

AHAJIN3A CJIOBOJJHUX PABAHCKHUX
OCIIMJIAITNJA CTPYKTYPA
CACTAB/BEHUX OJ1 KPYTHUX TEJIA
EJACTUYHUX TPEJHUX CETMEHATA

H. Papnosanosuh, H. 3opuh, H. Tpumosuh,
A. TomoBuh

OBaj pax mpencraBiba aHAMU3y CIOOOAHMX BHOpaIja
CTPYKTypa CacTaBJb€HHX OJf KpyTHX Tena MmehycoOHo
CIIOjJeHHX ca eNacTHYHUM rpenama. IIpermocTaBipa ce
Ja ce IeHTPM Maca KpPYTHUX Tela He Hajlaze Ha
HEYTPaJIHOj OCH HeAe(hOPMHUCAHOT EITACTHYHOT TPEIHOT
CerMEHTa Kao M Jla KpyTa Teljla BpIle PaBHO KpeTame Y
WCTOj PaBHHU U Ja c€ HUXOBH LIEHTPH Maca Hajase y Toj
nucroj paBHH. 3a oxpehuBame (pekBeHIMja cHcTeMa,
Mmomudpukanumja kmacugHe 'CTMM" wmerome je
ynotpebjbeHa. ENacTWyHM TpegHH CEerMEeHTH Cce
Tpetupajy xao Ojnep-bepaynujese rpene. Ilpukazan je
HYMEPHYKH ITpUMeEp.
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