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Abstract: 

Numerical simulations of different ceramic production phases often involve complex 
constitutive models, with difficult calibration process, relying on a large number of 
experiments. Methodological developments, proposed in present paper regarding this 
calibration problem can be outlined as follows: assessment of constitutive parameters is 
performed through inverse analysis procedure, centered on minimization of discrepancy 
function which quantifies the difference between measurable quantities and their computed 
counterpart. Resulting minimization problem is solved through genetic algorithms, while the 
computational burden is made consistent with constraints of routine industrial applications 
by exploiting Reduced Order Model (ROM) based on proper orthogonal decomposition. 
Throughout minimization, a gradual enrichment of designed ROM is used, by including 
additional simulations. Such strategy turned out to be beneficial when applied to models with 
a large number of parameters. Developed procedure seems to be effective when dealing with 
complex constitutive models, that can give rise to non-continuous discrepancy function due to 
the numerical instabilities. Proposed approach is tested and experimentally validated on the 
calibration of modified Drucker-Prager CAP model, frequently adopted for ceramic powder 
pressing simulations. Assessed values are compared with those obtained by traditional, time-
consuming tests, performed on pressed green bodies. 
Keywords: Powder pressing; Material calibration; Reduce order modeling; Inverse analysis. 
 
 
 
1. Introduction 
 

Pressing and sintering are different manufacturing phases used to form parts starting 
from a powder. Pressing represents mechanical compaction of a powder in order to form the 
geometrically shaped solid body, called “green body”, dimensionally close to the final part, 
which is obtained after a subsequent phase of sintering at high temperature. This production 
path is widely applied for manufacturing of various types of materials, including metallic 
materials through powder metallurgy [1-2], metal/non-metal composites [3-4], since offering 
larger flexibility when mixing components, ceramic materials [5], with high melting 
temperature, as sintering is generally performed at temperatures well below the melting one 
[6-7]. Though it offers diverse advantages, such production is fairly sensitive to the selection 
of various parameters (e.g. pressing force, particle size distribution, sintering heating rate 
etc.). Even a small change in these parameters can affect properties of the final product, with 
some defects being evidenced only at the end of the production process. As an example, the 
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lack of density homogeneity within the green body can cause different shrinking over the 
component during sintering, potentially violating the dimensional tolerances, or more severely 
can provoke the onset of internal cracks, resulting in component rejection. As a consequence, 
the production is usually relying on experienced operators to make final trial and-error 
adjustments [8]. 

Obvious practical advantages emerge in the above-outlined technologies by the 
employment of numerical methods for accurate simulations of diverse production phases. The 
development of these methods has been the focus of researchers, since the early works [9-10], 
considering only two-dimensional simulations, up to more recent studies dealing with 
multiscale three-dimensional models [11, 15]. The methodologies used to model the press and 
sinter powder manufacturing includes micro-mechanics [13-15], molecular dynamics [16] and 
continuum approaches [17-19]. 

Among the methodologies, continuum models have the benefit of shortest computing 
time, with the ability to predict attributes of interest, like density distribution, shape, residual 
stresses etc. 

Constitutive modeling of material involved within pressing and sintering, required by 
continuum approaches is a challenging task. Many powders are formed as a mixture which 
can melt, react, diffuse and even alloy during sintering [8], clearly requiring multi-physics 
models with an elevated number of governing parameters. Similar complexity characterizes 
the constitutive description required for the pressing phase since the initial powder has fairly 
different behavior than the solid green body, formed during the process. During pressing 
green body is undergoing volumetric plastic deformation, changing also the elastic properties, 
so it is required to utilize elastoplastic coupling within plasticity models, with most governing 
parameters changing exponentially with relative density [19]. 

Calibration of such models is a difficult task, often involving a large number of 
experiments [20]. As current praxis, the calibration of constitutive models used for powder 
pressing involves a series of destructive tests performed on green bodies [19, 21-22]. An 
additional complication is encountered for certain powder mixtures where particles deform 
and undergo viscous flow to the die wall, effectively changing friction during the pressing. In 
such cases, a series of uniaxial compression tests are performed on a powder, with various 
levels of lubrication in order to obtain an estimate of friction coefficient value [8].  

Clearly, such experiments are not suitable for the routine industrial applications. 
Furthermore, some parameters do not have clear physical meaning, so it is difficult to 
quantify them directly from the experiment [23]. As a result, the accurate input data 
occasionally are not available, so approximations or simplified relations are used within the 
simulations. 

An alternative advantageous strategy of the assessment of governing constitutive 
parameters is obtained by employing Inverse Analysis (IA) methodology. The present study 
aims at the development of a procedure for calibration of complex constitutive models used 
within pressing simulations, through IA methodology by means of data collected from 
pressing experiment only, without further experimentation on a green body. 

The assessment procedure based on IA rests on minimization of a discrepancy 
function designed to quantify the difference between experimentally measured quantities and 
their computed counterpart. This minimization can be achieved by employing mathematical 
programming algorithms, like Trust Region Algorithm (TRA) [24], which implies calculation 
of first derivatives, numerically approximated by forwarding finite differences. In the present 
study, due to the complexity of considered constitutive model, the discrepancy function 
turned out to be rather convex, with unstable numerical simulations for certain parameter 
combinations. Such circumstance makes the TRA inefficient, since the value of the 
discrepancy function, or its derivatives, cannot be computed at every point in parameter 
space. 
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Alternatively, the minimization problem can be solved by means of soft computing 
techniques like Genetic Algorithms (GA) [25], capable of reaching a global minimum of no 
continuous function even with strong non-convexity. Such result is achieved through a 
sequence of function evaluations, typically larger by one order of magnitude than what is 
required by TRA. Significant time savings can be achieved if the model reduction is adopted 
for the non-linear test simulations needed to compute the value of discrepancy function.  

In this paper, a novel procedure is proposed and investigated regarding the above-
outlined problem of calibration. Developed procedure combines GA algorithm with test 
simulations performed by Reduced Order Model (ROM) based on Proper Orthogonal 
Decomposition (POD) and subsequent interpolation by Radial Basis Functions (RBF). This 
methodology has already been adopted in different research and described in details in [26-
27]. Here a modified version is developed and utilized, specifically addressing the laborious 
phase of “training”, which is computationally the most demanding. This preliminary phase 
contains a fairly large number of simulations performed by the full numerical model (e.g. by 
FEM). In what follows a new strategy is proposed which utilizes ROM with controllable 
enrichment during the optimization by placing new training simulations within the zones with 
lower discrepancy function, where it is more important to have accurate calculations. Such 
strategy results in significant time savings as the recursive simulations within the 
minimization phase, are mostly performed by POD-RBF reduced model, gradually becoming 
more accurate throughout the minimization. 

Developed procedure is experimentally verified with reference to the modified 
Drucker-Prager CAP model already employed by several authors for cold pressing 
simulations (see e.g. [19, 21-22]). With additional complexity adopted in this study, with 
respect to previous works, the number of parameters to identified equals 19. Resulting 
procedure turns out also to be numerically more stable as the fast POD-RBF model 
regularizes the convergence problems otherwise present with traditional FEM computations. 
The rest of the paper is organized as follows: Section 2 is devoted to a brief outline of the 
applied inverse analysis procedure for the assessment of material constitutive parameters in 
the present context; developed procedure which combines GA with specifically designed 
ROM is given in Section 3; within Section 4 validation of proposed strategy is presented in 
terms of comparative results considering values obtained by a novel procedure, and through 
more laborious experiments on green bodies; Section 5 contains conclusions regarding 
advantages and limitations of presented method, with potential future developments. 
 

2. Experimental procedure 
2.1. Constitutive model and the assessment of governing parameters through 

inverse analysis 
 

Within present study a continuum approach is selected to model powder pressing 
phase, offering the advantage of modeling at one scale only. Modified Drucker-Prager CAP 
model was adopted as the constitutive model. Original Drucker-Prager (DP) yield criterion 
represents a pressure sensitive generalization of a popular von Mises criterion. DP yield 
criterion reads: 

( ) ( ) 0tan 01 =−⋅−= dIqfS ασ       (1) 
where I1 is the first invariant of the stress tensor, q is the equivalent von Mises stress, 

while d0 and α are material parameters. Clearly, for α = 0, DP yield criterion reduces to von 
Mises. Such generalization is appropriate for materials with internal friction, like powders, as 
for these materials the pressure is influencing the onset of yielding. 

To eliminate the deficiency of DP yield criterion, with material withstanding 
unlimited hydrostatic pressure, an additional elliptical yield surface is added (i.e. “cap”), to 
form modified Drucker-Prager CAP yield criterion. Visualization of this double-surface yield 
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criterion in the meridian plane is given in Fig. 1, with hydrostatic pressure reported as a 
positive value on the abscissa, typically adopted in soil mechanics, as opposite to solid 
mechanics convention. 

 
Fig. 1. Drucker-Prager CAP yield surface in a meridian plane. 

 
Additional CAP surface is defined by the following yield condition: 
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Clearly, this addition introduces new constitutive parameters, here specifically: 

parameter R that controls the shape of the cap, parameter β used to define the transition 
between shear failure and cap surface, pa the evolution parameter related to the hydrostatic 
pressure yield stress pb. For a detailed description of modified form of Drucker-Prager yield 
condition, the reader is referred to [19]. 
Further particularizations of the above model, adopted in the present study, are given as 
follows: 

• Relative density is related to the volumetric plastic strain, utilized as internal variable 
within the employed constitutive model. 

• Parameters are assumed to have an exponential dependency on relative density, 
namely for generic parameter P the relation reads: 
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where 0ρ and 1ρ  are fixed values of relative density, here specifically 0.5 and 0.9 
respectively, while P0 and P1 are corresponding values of the parameter at these 
relative densities, and n is the exponent of this transition. Therefore, there are three 
values to be assessed related to each constitutive parameter: P0, P1 and n. 

• The coefficient of Coulomb friction between the specimen and die wall  is assumed 
as additional unknown and subjected to the identification. 

The evolution of parameter pb according to (3) is introduced in numerical model through 
hardening law, while for remaining parameters, namely: Young’s modulus (E), Poisson’s 
ratio (ν ), friction angle (α), cap eccentricity (R) and cohesion (d0), additional implementation 
through ABAQUS user sub-routine [28] was required, in order to define these parameters as 
field dependent values (i.e. depending on volumetric plastic strain). 

The above-outlined formulation represents a more realistic alternative to most of the 
previous studies, where diverse simplifications were used. For example, in [19] the influence 
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of die wall friction was neglected, which in turn required a specific experiment with wall 
lubrication to minimize the frictional effect. In [29] cohesion and friction angle were 
considered as constants within compaction simulations, while in [30] it was assumed for 
Poisson’s ratio. Clearly, more detailed description results in the more complex calibration 
process, which in the present study consists in the quantification of 19 parameters: 6 
constitutive parameters as a function of relative density following relation is given by (3), and 
one friction coefficient, considered as a constant during the compaction. 

Current praxis for calibration relies on the extensive experiments performed on green 
body apt to quantify the parameters, which are regarding the only single value of relative 
density (see e.g. [19, 21-22, 29]). In order to quantify them over a wider range, it is required 
to perform a significant amount of experiments, with some values of relative density difficult 
to test. The advantageous alternative to this calibration is offered by the application of Inverse 
Analysis (IA) methodology, proposed in this study. 

IA represents a synergic combination of experiments with numerical simulations and 
mathematical programming apt to provide a transition from experimentally measured 
quantities to required constitutive parameters. It is centered on the minimization of a 
“discrepancy function” that quantifies the difference between measured quantities and their 
computed counterpart. Such problem can be briefly formulated as follows. 

Let ue be the vector of experimental data. The minimization with respect to the 
parameters in p, of a discrepancy function can be thus formulated if u(p) represents the 
measurable quantities related by test simulation (i.e. “direct analysis”) to the parameters 
sought as unknown variables: 

 
( ) ( )[ ] ( ) [ ] [ ])()( :     whereminˆˆ puupuuppp

p
−−== e

T
eωωω    (4) 

In the present study, digitalized force vs displacement curve, collected from pressing 
test, together with the value of radial stresses measured at two points along the height of 
compacting specimen are exploited to form a vector of measurable quantities. Details of used 
experimental configurations are given in Section 2.3. 

The solution to the minimization problem defined by (4) directly provides values of 
sought constitutive parameters. Clearly, such formulation provides an important advantage as 
the material parameters are obtained straight from measured quantities within the powder 
pressing experiment, with no further experimentation needed on green bodies. In addition, 
considering the assumed relation (3), calibration through IA procedure results in the 
quantification of parameter value over a wide range of relative density. Obtaining numerical 
solution to the above minimization problem is therefore central within formulated inverse 
analysis. 

The application of mathematical programming first-order Trust Region Algorithm, as 
the most efficient tool to find the numerical solution of minimization problems of the type 
given by (4), turned out to be inapplicable in the present case. Such circumstance is related to 
the large complexity of constitutive model subjected to the calibration, with unstable 
numerical simulations for certain parameter combinations. 

To overcome this difficulty, specifically designed Genetic Algorithm (GA) was 
utilized in obtaining the numerical solution of above minimization problem (4). The 
minimization performed through GA is based on a sequence of “generations” over the 
parameter search domain. Main features of the algorithm designed and employed herein are 
outlined in what follows: 

• A set of N = 200 vectors of parameters is randomly generated, and for each of them, 
the discrepancy function is calculated. This set forms the initial “population”, and the 
members are sorted in the ascending order of the corresponding value of the 
discrepancy function. 
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• A subsequent generation is formed by taking the first 2 members with the best value 
of discrepancy function and directly passing them to next generation as the “elite” 
members; the worst 50 members are subjected to “mutation”, namely a random 
perturbation of their parameter vectors; the remaining members are subjected to a 
“crossover”, where two members of this group are selected as “parents” and their 
parameter values are randomly combined in order to form two additional members 
with recombined parameters, to be passed to the next generation. 

• In a view of the above mentioned numerical instabilities, in the case of lack of 
convergency, the member is replaced by another one, with a slight modification of 
parameters so that the overall number of members in each generation is kept constant. 

• The process is repeated until some of the specified stopping criteria are reached. From 
the last generation upon the termination of the optimization process, the best member 
is taken as the result of the minimization problem. 
The outlined scheme clearly is beneficial for considered minimization problem with 

respect to the TRA, as it is not requiring the discrepancy function to be, neither continuous 
nor convex over the parameter search domain. However, it involves a significantly larger 
number of simulations, which in a present context represents a sever burden and handicap if 
applied in routine industrial use. A remedy to this inconvenience, adopted here, consists in 
employing a Reduced Order Model (ROM) to perform test simulations. The outline of 
designed ROM which is incorporated within the optimization genetic algorithm is given in the 
following Section. 
 
2.2. Reduced order model with controllable enrichment 
 

In practical problems of parameter calibration through inverse analysis, a recurrent 
employment of the direct analysis (i.e. test simulations) is required. To make the resulting 
procedure more economical in terms of computing times, recourse is made to reduced order 
modeling, here specifically based on Proper Orthogonal Decomposition. Such a concept 
exploits the “correlation” between the computed test responses and is already applied in 
different contexts [27], [31-32]. Details of the methodology can be found in [26], while in 
what follows an outline of the procedure is given, with particular emphasis on its 
incorporation within the optimization algorithm. 

(a) Within the “search domain” in the space of parameters to be determined, N points 
are selected (called “grid nodes”). (b) Each one of these N nodes is assumed as input of direct 
analysis simulating the test by utilizing full order model (i.e. FEM) and leading to vector  
(called “snapshot”) collecting M test simulation quantities, here specifically displacements 
and corresponding forces required to form force-displacement curve for die compaction, and 
radial stress measurements. (c) Resulting N vectors are expected to be correlated since 
corresponding to the same mechanical system, with different input parameters, suggesting 
that a new “basis” can be computed in which axes with negligible components of vectors  
are dropped. (d) With the above model reduction procedure, each  vector is now 
approximated by its “amplitude” vector  in the new basis through a matrix generated by the 
eigenvalue computation of a symmetric matrix of order M. (e) Starting from any new 
parameter vector p, the corresponding vector a and the related test simulation quantities 
vector u, can now be computed with controllable accuracy and with much smaller 
computational effort by means of RBF interpolation among the previously computed 
responses  with parameters  by test simulations through full order model. 

iu

iu

iu

ia

iu ip
In the previous sequence, operations (a) - (c) are referred to as “training” of the model 

and can be time to consume. The selection of N grid nodes influences the accuracy of 
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resulting ROM. The most controllable accuracy is achieved if each side of the search domain 
interval is subdivided into n intervals, but the number of such nodes grows exponentially with 
the number of sought parameters. This feature constrains the application of the outlined model 
reduction in the present context as the number of 19 sought parameters makes impossible the 
use or regular grid nodes distribution. To overcome this shortcoming, a scheme is proposed 
with employment of ROM with controllable enrichment, that is directly incorporated into the 
optimization genetic algorithm. The description of the proposed scheme in a form of sequence 
of operative steps is given here below. 

a) A set of N = 200 parameter combinations is randomly generated over the search 
domain and for each of them, test simulation is performed in a force controlled 
regime by utilizing finite element model. From each analysis, a snapshot vector  is 
formed collecting 100 displacements corresponding to 100 equidistantly spaced force 
levels from zero to maximum specified force. Measurements of radial stresses at two 
points along the specimen height are provided for the same 100 force levels. Account 
is taken through normalization for diverse orders of magnitude of different entries. 

iu

b) Computation in the previous step served to form snapshot matrix . 
According to POD theory (for details see [26]) by performing eigenvalue 
computation of matrix , a new basis is formed with orthogonal directions 
collected in a matrix Φ . The eigenvalues provide information exploited for 
truncation of the new basis, namely, by preserving only directions corresponding to 
the largest eigenvalues. In the present problem the drop by several orders of 
magnitude was evidenced for 11

],...,[ 1 NuuU =

UUD T=

th eigenvalue with respect to the largest one, therefore 
truncated basis Φ

)
gathered first 10 directions. 

c) Matrix of “amplitudes”, representing a projection of original snapshot matrix to a 
sub-space spanned by Φ

)
 is computed by: 

UΦA ⋅= T)ˆ          (5) 
d) For RBF interpolation inverse multiquadric function was adopted which reads: 

( )
1

1
2 +−

=
i

ig
pp

p               (6) 

Interpolation coefficients, collected in matrix B, are computed through following 
matrix equation: 

ΦGB ˆ1 ⋅= −          (7) 
where N × N matrix G has as entries ( )jiij gg p=  computed using radial basis 
function (6), considering as function arguments all parameter vectors 

generated in step (a). Nii ,...1  , =p
Calculations (5) - (7) served to form reduced order model which can further be used 
to compute test response to an arbitrary set of parameters p through a matrix 
multiplication given by: 

)(ˆ)( pgBΦpu ⋅⋅≈         (8) 
where g is a vector of length N with entries computed through (6). 

e) N simulations performed within step (a) are further exploited to form the first 
generation for the optimization genetic algorithm. The members are sorted in 
ascending order of the discrepancy function and the second generation is formed by 
employing mechanisms summarized in Section 2.1. 

f) Subsequent generations are formed by performing all new computations through 
ROM, resulting in significant time savings as the computation given by (8) represents 
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a straightforward matrix multiplication and it is therefore by several orders of 
magnitude faster than nonlinear FEM simulation. 

g) In the case of the replacement of the elite member due to the improvement of the 
discrepancy function, response to the test for that member has computed also through 
full order FE model for comparative purposes, to assess the error of reduced model. 
Should the error be larger than prescribed tolerance, additional FEM calculations are 
performed for best 50 members within a current generation with newly generated 
snapshots added as enrichment to those already computed within step (a). Refined 
ROM is now formed considering enlarged snapshot matrix by performing operations 
(b) - (d). 
The outlined sequence is repeated until convergence criteria are met, specifically here 

regarding a number of generations during which no improvement in the discrepancy function 
was achieved. Such a scheme offers an important reduction in computing time as it is 
expected that most of the function evaluations are going to be performed by ROM. Further 
on, the gradual enrichments of ROM are performed within identified zones of the low level of 
discrepancy function, with model becoming more accurate particularly within the zone of 
interest. Proposed strategy is applied to the calibration of constitutive model outlined in 
Section 2.1 based on experiments performed on pressing of an alumina powder. Results are 
summarized in the following Section. 
 
2.3. Adopted experiment and related numerical modeling 
 

For validation purposes of the proposed calibration method pressing experiment of 
alumina powder is considered. The test is simulated by finite element modeling, utilizing the 
commercial code ABAQUS [28], adopting as material model Drucker-Prager CAP model 
with particularizations outlined in Section 2.1. 

Developed calibration procedure is designed to exploit only data which can be 
collected from the pressing experiment. In order to make the more heterogeneous state of 
stress within compacting specimen, and therefore obtaining “rich” experimental data, in terms 
of being influenced by diverse constitutive parameters, two different configurations of die and 
punch are simultaneously utilized. Schematic representation of both configurations (further in 
the paper referred to as configuration 1 and configuration 2), together with the position of 
gauges used to measure radial stresses are visualized in Fig. 2. 

 

 
Fig. 2. Pressing die / punch configurations used for calibration with position of strain gauges: 

(a) configuration 1; (b) configuration 2. 
 

In a view of significant difference in rigidity between specimen and surrounding die, 
made of steel, both die and punch are modeled as rigid analytical surfaces. Between all 
surfaces a Coulomb friction unilateral contact is considered with coefficient treated as an 
unknown value, subjected to the identification procedure, together with other material 
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parameters. To abbreviate computing time for test simulations, for numerical modeling of 
configuration 1, the axial-symmetry is exploited, with the model being two-dimensional. The 
lack of axial symmetry of configuration 2 enforced three-dimensional modeling, with half of 
the model being considered. The adopted finite element mesh for both models is visualized in 
Fig. 3. 

 
Fig. 3. Finite element mesh adopted for test simulations: (a) configuration 1;  

(b) configuration 2. 
 

 As specified in Section 2.2, 100 displacements and 100 radial stresses from both 
measured locations, corresponding to the prescribed level of pressing force are collected from 
experiments. The three curves, i.e. force-displacement, and two stress measurements, from 
each of the two experiments, served to form a so-called “residual vector”, namely ue � u(p), 
further used in discrepancy function within the minimization problem (4). Fig. 4 
schematically shows how the entries of the residual vector are formed from considered 
curves. 

 
Fig. 4. Constructing the residual vector from computed and experimental curves: (a) force-

displacement and (b) force-radial stress. 
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Additional press tests were performed utilizing the configuration 1 to produce 
cylindrical green bodies with different levels of relative density, specifically: 0.73, 0.78, 0.83, 
0.88 and 0.93, to be further subjected to Brazilian test and Crush test. On the basis of these 
tests, through the procedure explained in [21], following constitutive parameters are 
calculated: cohesion (d0), friction angle (α) and hydrostatic pressure yield stress (pb). These 
values served as a reference to compare against those assessed through a novel procedure 
presented here. 
 
 
3. Results and discussion 
 

The solution of defined inverse problem on the basis of the procedure presented in 
what precedes, led to the parameter values listed in Table 1. 
 
Table I Parameters assessed through inverse analysis procedure. 
Parameter Initial value Final value Exponent 
Young’s modulus 0.023 [GPa] 1.463 [GPa] 1.79 
Poisson’s ratio 0.116 0.387 1.53 
Cohesion 0.353 [MPa] 2.451 [MPa] 1.71 
Friction angle 48.88 [0] 53.72 [0] 0.98 
Cap eccentricity 0.550 0.286 1.86 
Hydrostatic yield stress 0.363 [MPa] 22.198 [MPa] 2.65 
Coulomb friction coefficient 0.108 
 

 For validation purposes, test simulations are further performed, employing as inputs 
the assessed parameters given in Table 1. Simulated and experimentally measured curves are 
compared in Figs. 5-7.  

 
 

Fig. 5. Simulated and experimental force-displacement curve for configuration 1: computed 
with initial and with final parameter values 

 
Fig. 5 and Fig. 6 shows that computed response, in terms of force-displacement 

curve, is reasonable close to the experimental one. On both figures also the curves with 
parameters used in the initialization are visualized, corroborating that the minimization 
process is done well even when starting from curves quite far from the “target” experimental 
ones. In the same manner Fig. 7 shows one of the radial stress measurements, that turned out 
to be representative of all other measurements, not shown here for brevity. 

The above minimization result was achieved after 183 generations, each containing 
200 members, hence involving 200×183 = 36600 function evaluations. The minimization was 
terminated by reaching stopping criterion of exceeding 40 generations with no improvement 
in the discrepancy function, with an overall reduction from its initial value of 24469.8 to a 
final one of 235.2. Within proposed procedure, the complete first generation and additional 19 
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enrichments, all including 50 simulations, were performed by full-order finite element model. 
A total number of time-consuming simulations, therefore, amounts 1150, which is less than 
4% of the overall number of function evaluations. Considering that remaining function 
evaluations are computed on the basis of ROM through (8), such scheme contributes to the 
shortening of computing time by a factor of more than 30. It represents important time saving, 
as the pressing simulation for a three-dimensional model of configuration 2 takes about 10 
minutes on a computer with i7 processor and 8GB of RAM. Reaching the same result through 
ROM is done in a real time. 

 
 

Fig. 6. Simulated and experimental force-displacement curve for configuration 2: computed 
with initial and with final parameter values. 

 
 

Fig. 7. Radial stress measurement from the bottom gauge in configuration 2. 
 

 
 

Fig. 8. Comparison of cohesion (d0) assessed through the novel procedure and on the basis of 
destructive tests performed on green bodies. 

 
Selected parameters are compared against the values obtained through the procedure 

described in [21], as outlined in Section 2.3. The comparisons are visualized in Figs. 8-10. 
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These results contribute to the conclusion that assumed relationship between parameters and 
relative density given by (3) seems to be general enough, resembling both exponential trend 
(for cohesion and hydrostatic compressive yield stress) as well as the linear one (friction 
angle).  

 
 

Fig. 9. Comparison of friction angle (α) assessed through the novel procedure and on the basis 
of destructive tests performed on green bodies. 

 
Fig. 10. Hydrostatic pressure yield stress (pb) assessed through novel procedure and tests on a 

green body. 
 

 
 

Fig. 11. The force-displacement curve for configuration 1 corresponding to a final set of 
parameters: comparison between FEM and ROM calculations. 

 
The accuracy of ROM is finally verified by performing additional comparison 

considering as inputs final set of parameters and performing computation both by full-order 
finite element model and by ROM. The comparison led to the results visualized in Fig. 11, 
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evidence that there is the insignificant difference between the two curves. Such result 
corroborates the conjecture that the fast computations offered by reduced model are 
apparently not introducing any additional error within the identification procedure. 
 

4. Conclusion 
 

Material calibration procedure based on inverse analysis that is proposed and 
investigated in this study led to the conclusions which are briefly outlined in what follows. 

Complex constitutive models with a large number of governing parameters are 
frequently employed in the simulations of diverse production phases of ceramic components. 
Calibration of such models through inverse analysis (IA) methodology turned out to be 
promising, offering larger flexibility with respect to conventional testing methods. With the 
example treated in this paper, it was demonstrated that IA provides an efficient transition 
from experimental data collected from pressing test to the constitutive parameters defined as a 
function of relative density. 

The inverse analysis procedure inherently contains a numerical simulation of the test, 
which may be unstable when complex constitutive models are utilized. Such circumstance 
penalizes the use of efficient first-order (i.e. computing first derivatives only) mathematical 
programming algorithms for providing the solution to the resulting minimization problem 
within IA. Alternatively, genetic algorithms can be exploited, with increased computational 
effort, as these algorithms are involving a larger number of simulations. Reduced order 
modeling, as proposed herein, turns out to be crucial in order to make the computational time 
consistent with constrains related to the routine industrial applications. Proposed training 
scheme, different from previous studies (see e.g. [27, 32-33]) worked fairly effective in 
present context, by providing the enrichments of Reduced Order Model (ROM) throughout 
the optimization. The computational effort is therefore concentrated within the zone of 
parameters with a low value of the discrepancy function. Such strategy may be an 
advantageous alternative to the training of ROM according to “regular grid of nodes”, for any 
situation where the number of sought parameters is high. This circumstance frequently occurs 
in complex multi-physics simulations utilized in ceramic productions. 

Future promising developments current in progress concern the use of presented 
method to the calibration of constitutive models with even larger complexity used for 
simulations of other phases of production. The real challenging task, worth of investigation, is 
the application of such a scheme to multi-scale models. 
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Садржај: Нумеричке симулације различитих фаза у производњи керамичких 
компоненти често укључују сложене конститутивне моделе, чије калибрисање је 
захтевно, и ослања се на велики број експеримената. Методологија развијена и 
презентована у овом раду односи се на овај проблем калибрисања, а састоји се из 
следећег: конститутивни параметри се квантификују на бази инверзне анализе, 
засноване на минимизацији циљне функције, која квантификује разлику између 
измерених и срачунатих вредности. Резултујући проблем минимизације решава се 
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коришћењем генетичких алгоритама, а рачунарско време потребно за ово решење је 
драстично смањено извођењем нумеричких симулација путем Редукованог Модела 
(РМ), заснованог на правилној ортогоналној декомпозицији. Током минимизације РМ 
поступно постаје све тачнији, увођењем нових нумеричких симулација које се користе 
за његово „тренирање“. Ова стратегија даје значајне предности у примени на 
конститутивне моделе који зависе од великог броја параметара, где циљна функција 
може бити неконвексна, као последица нумеричких нестабилности различитог типа. 
Презентовани приступ је тестиран и експериментално верификован на решавању 
проблем калибрације модификованог Дракер-Прагер модела који се користи у 
симулацијама пресовања керамичког праха. Резултати су упоређени са вредностима 
добијеним кроз класичан приступ заснован на серији тестова на отпресцима. 
Кључне речи: пресовање праха; калибрација конститутивних модела; редуковани 
нумерички модели; инверзне анализе. 
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