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Gauss quadrature rule

1. Introduction

Let do be a nonnegative measure with infinitely many points of support. The smallest closed interval that contains the
support of do is denoted by [a, b] with —co < a < b < oo, and we assume that the distribution function o has infinitely
many points of increase in this interval. If o is an absolutely continuous function, then do (x) = w(x) dx on supp(do ), where
w(x) > 0is a weight function. Let P, denote the set of all polynomials of degree at most k and introduce the quadrature
formula (abbreviated q.f.)

n
Q1= wf )
j=1
with real distinct nodes x; < X, < - -+ < x, and real weights w;. We say that Q, isa (2n —m — 1, n, do’) q.f. if the remainder
term R, [f], defined by

/f(x) do (%) = Qulf] + Ralf1,

satisfies R,[f] = O for all f € Py,_m—1. The rule Q, then is said to have algebraic degree of precision 2n — m — 1. Here m
is an integer such that 0 < m < n.If in addition all quadrature weights wj; are positive, then Q, is said to be a positive
(2n — m — 1, n, do) q.f. Furthermore, we say that a polynomial t, = ]_[;‘:1 (x — x;) generates a (2n —m — 1, n, do) q.f.if its
zeros x; are real and simple, and the q.f. with nodes x4, x, ..., xpisa(2n—m—1,n,do) qf.A(2n —m — 1,n,do) q.f. is

internal if all its nodes are in the closed interval [a, b]. A node not belonging to the interval [a, b] is said to be external.
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It is well known that an ¢-node Gauss quadrature rule associated with the measure do can be represented by an £ x £
real symmetric tridiagonal matrix jf(da) determined by the recursion coefficients of the first £ orthogonal polynomials
associated with the measure do; see, e.g., Gautschi [ 1] or below. Spalevi¢ [2] proposed that the leading (¢ — 1) x (£ — 1)
tridiagonal submatrix of ]g(da) be flipped right-left and upside-down, and appended to ]f (do) to obtain a new symmetric
tridiagonal matrix Jo,—1 ¢—1 of order 2¢ — 1. The latter matrix defines a (2¢ — 1)-node quadrature formula referred to
as a generalized averaged Gaussian quadrature formula. Spalevi¢ showed in [3] that these quadrature rules may yield a
smaller quadrature error than what can be explained by just considering their algebraic degree of precision. This makes
the generalized averaged Gaussian quadrature formulas attractive to use when it is inexpensive to evaluate the integrand
at the nodes, but it is expensive or cumbersome to compute the moment information needed to determine the Gauss rule.
Applications of generalized averaged Gaussian quadrature rules to problems of this kind are described in [4], where the
quadrature rules are used to estimate quantities of interest in network analysis. In this application, the computation of
each row and column of the matrix jf (do) requires the evaluation of a matrix-vector product with the adjacency matrix
that defines the graph. The evaluation of matrix-vector products is expensive when the adjacency matrix is large. Gautschi
describes in [ 1, Section 2.2], as well as in [5], other applications with measures do, for which the recursion coefficients for
the associated orthogonal polynomials are not explicitly known and therefore have to be computed in order to determine
Gaussian quadrature formulas. Gautschi proposed to compute approximations of the recursion coefficients by discretizing
the measure do and applying a Stieltjes procedure using the approximations of the required inner products determined
by the discretized measure. These computations may be cumbersome if a fine discretization is required and a Gauss rule
of high order is desired. It may then be attractive to use generalized averaged Gaussian quadrature formulas instead of
standard Gauss rules, because the former often give higher accuracy when the same recursion coefficients are available for
their construction; see Section 5 for computed examples.

It is the purpose of the present paper to describe extensions of the generalized averaged Gaussian quadrature formulas
introduced in [2]. Section 2 discusses the extension of the real symmetric tridiagonal £ x £ matrix ]f (do) associated with
an £-node Gauss quadrature rule with respect to the measure do to a real symmetric tridiagonal matrix Ji , of order k 4 ¢
by appending a fairly arbitrary real symmetric tridiagonal matrix of order k to ]f (do). Similarly as the generalized averaged
Gaussian formulas introduced by Spalevi¢ [2], these extensions may yield a smaller quadrature error than the underlying
£-node Gaussian quadrature formula. Section 3 is concerned with the possible presence of exterior nodes of generalized
averaged Gaussian quadrature formulas. It is well known that the nodes of (standard) Gaussian quadrature formulas live in
the convex hull of the support of the measure that determines the formulas. Spalevi¢ showed that the generalized averaged
Gaussian quadrature formulas in [2] may have one node to the right or to the left of the convex hull of the support of the
measure. It therefore may not be possible to apply these quadrature rules when the integrand is defined on the convex
hull of the support of the measure only. To remedy this shortcoming, truncated generalized averaged Gaussian quadrature
rules were introduced in [4]. These rules are obtained by removing the last few rows and columns of the real symmetric
tridiagonal matrix J,¢—1¢—1 associated with the generalized averaged Gaussian quadrature rules described in [2]. These
truncated generalized averaged Gaussian quadrature rules have the same algebraic degree of precision as the non-truncated
ones. We investigate these rules by using results by Peherstorfer [6] on positive quadrature rules. Section 4 presents a
detailed analysis of truncated generalized averaged Gaussian quadrature rules obtained by appending only one row and
column to the matrix ]f(do), and investigates for classical measures do when these rules are internal. Section 5 presents a
few computed examples and Section 6 contains concluding remarks.

2. Generalized averaged Gaussian quadrature formulas

The following result by Peherstorfer [6, Lemma 1.1] is important for the investigation of generalized averaged Gaussian
quadrature rules. The lemma uses properties of so-called associated polynomials. These polynomials are defined below.

Lemma 2.1. Let n, m € Ny. Then t, € P, determines a positive 2n — 1 —m, n, do’) q.f. ifand only if t, is orthogonal to P, _,_4

with respect to do, t, has n simple zeros in the open interval (a, b), and the zeros of t, and t,gl_)l interlace, where t,gl_)l denotes the
associated polynomial to t,,.

Let py denote the monic polynomial of degree k that is orthogonal to P,_; with respect to do, i.e.,

b
f ¥pk)do(x) =0, j=0,1,....k—1.
a
Recall that the polynomials {p};2, satisfy a three-term recurrence relation of the form

Prer1(®) = (X — a)pe(®) — Bkpe—1(®),  k=0,1,..., (2.1)
where p_1(x) = 0, po(x) = 1, ax € R, and B > 0 for all k; see, e.g., Gautschi [ 1] for details. The £-node Gaussian rule

3
QSt1= 3 o () 22
j=1
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is the unique ¢-node quadrature formula of algebraic degree of precision 2¢ — 1. This is the highest possible algebraic
degree of precision 2¢ — 1 of a quadrature rule with ¢ nodes. The nodes are the zeros of p,. Both the nodes and weights can
be conveniently computed by the Golub-Welsch algorithm [7], which is based on the observation that the nodes are the
eigenvalues and the weights are proportional to the squares of the first components of the eigenvectors of the symmetric
tridiagonal matrix

o \/ﬂi] 0
I¢do) = VB e R

0 Be—1 o

determined by the recursion coefficients (2.1). This is discussed, e.g., by Wilf [8]. The algorithm computes the nodes and
weights of the Gaussian quadrature rule (2.2) from the matrix ]ZG (do) in only © (£2) arithmetic floating point operations. A
nice recent discussion of the Golub-Welsch algorithm is provided by Golub and Meurant [9].

The polynomials p,(("), k,j € Ng, known as the associated polynomials to the monic orthogonal polynomials py, play an

important role in the sequel. They are defined by the shifted recurrence relation
P ) = (x— a0 — Bip (0, k=0,1,...,

where p@l (x) =0and pg) x) =1.
Peherstorfer [6] showed that a polynomial t,, generates a positive 2n — 1 — m, n, do) q.f. (0 < m < n)if and only if t,
can be generated by a three-term recurrence relation of the form

1) = (x — @G — Biti1(x), j=0,1,....n—1,
wheret_;(x) =0, to(x) = 1,& € R, Bj > 0, and
m-+ 1}

@ = qj forj:O,l,...,n—1—|: 5

- m
Bi = B; forj=0,l,...,n—l—[5],

are such that

senti(a) = (—1Y, () >0, j=1,2,...,n.
Here [«] denotes the integer part of @ > 0. The properties of the polynomials t; are equivalent to that t, can be represented
inthe form (£ .= [(m+ 1)/2], n > 2¢,ie,n— £ > {)

tn = 8Pn—t — Pr—t8t—1Pn—t—1, (2.3)
where g,_; and g, are generated by a three-term recurrence relation

G110 = (X = @1 DG — Bujga (0, j=0,1,...,6—1,

andg_q(x) = 0,8(x) = 1, witha,_1_j € Rand anj >0forj=0,1,...,¢—1; Bn,g > 0, Bn,g = Bp_¢ifm=2¢—1,are
such that
sgngi(@) = (=1, gb) >0, j=1,2,....¢
see the proof of [6, Theorem 3.2], in particular (d) = (a).
We may define quadrature formulas of the kind discussed as follows. Let du be a nonnegative measure with the same

support as do. In particular, u has infinitely many points of increase. Let p, denote the monic polynomial of degree k that is
orthogonal to P,_; with respect to du, i.e.,

/Xif’k(x)dﬂ(x) =0, j=0,1,...,k—1.

Then the polynomials {p}2, satisfy a three-term recurrence relation of the form

Prr1(®) = (X — Y)bre(®) — Apr—1(®), k=0,1,...,
where p_1(x) = 0,po(X) = 1, y, € Rand A, > 0.
Consider the positive quadrature formula determined by the symmetric tridiagonal matrix with nontrivial entries
&n_‘]_j =Y and Bn—j = )Lj fOl'j =0,1,...,¢£—1,
,Bn_@ = ﬂn—( (m =20 — 1), i.e., ﬂn—l = )»g (m = 22)
We then obtain
g=p. j=12....L

(2.4)
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Remark 2.1. The choice (2.4) of the recursion coefficients &,_;—_; and En_j was proposed in [2]. It gives quadrature formulas
with several desirable properties. However, other choices are possible; see Section 5 for an illustration.

Conversely, letting
g =p¢ and ge_1 = Pe_1, (2.5)
we obtain the relations (2.4). Hence, if (2.5) or (2.4) hold, then (2.3) is reduced to
th = ﬁl *Pn—e — Bn—({ ﬁ({—l *Pn—t—1,
and t, generates a positive quadrature formula, which we denote by (2n — m — 1, n, do, du). The associated symmetric
tridiagonal matrix J, ,(do, di) € R™" is given by

w VB 0 T
S e B

VBn—t—2  dn—e—2  /Ba—t—1
VBn—t—1  an—¢—1 Bn—e

Bn—t Ye-1 Ag—1

IZERVZEY
_O VAo A

where we circumscribe the last entries determined by the measure do by rectangles.

Remark 2.2. The special case du = do andn = 2k — 1, £ = k — 1is analyzed in [2,3].
3. Quadrature rules determined by truncation of J,, ;,(do, dp)

We may remove the lasti (i € {1,...,£ — 1}) rows and columns of the tridiagonal J, ¢(do, d) € R™" defined above.
The following theorem shows that the new positive quadrature rule 2n—m—1, n—i, do, dit) with n —inodes so obtained
has the same algebraic degree of precision as the original quadrature formula.

Theorem 3.1. The (2n; —m; — 1, n;, do, du) q.f. obtained by removing the last i rows and columns from the matrix J, ¢, (do, dp),
wheren; =n —1i,¢; = £ — i := [(m; + 1)/2], has the same algebraic degree of precision as the 2n — m — 1, n, do, du) q.f.

Proof. Consider first the case when mis odd, i.e., m = 2¢ — 1. Then we have Bn,g = Bn_¢. The algebraic degree of precision
ofthe 2n —m — 1,n,do,du) q.f.isd = 2n — m — 1 = 2n — 2¢. In the quadrature formula (2n; — m; — 1, n;, do, du), we
have that m; is odd, i.e., m; = 2¢; — 1 = 2(£ — i) — 1, since in this case

Bt = Bt = Bui—t—i) = Br—t; = Pri—t;-
Therefore, the algebraic degree of precision of the (2n; — m; — 1, n;, do, du) q.f.is d; = 2n; — m; — 1 = 2n — 2£. This implies
thatd; = d. _
We turn to the case when m is even, ie, m = 2{. Then B,y = A, The algebraic degree of precision of the
2n—m —1,n,do,du) qf.isd = 2n — m — 1 = 2n — 2¢ — 1. In the quadrature formula (2n; — m; — 1, n;, do, du),
we have that m; is even, i.e.,, m; = 2¢; = 2(£ — i), since in this case

Bn—e = Ao = Bnoi—e—i) = Bnj—t;-

Therefore, the algebraic degree of precision of the 2n; — m; — 1, n;, do, du) q.f.isd; = 2n; — m; — 1 = 2n — 2¢ — 1. Hence,
d=d O

Using results of Peherstorfer [G], it easily can be shown that the (2n —m — 1, n—i, do, du) q.f. is generated by the monic
polynomial t,,_; given by

th—i = ﬁgi,‘pnfé - anf f’gi,‘_1pnflfl, (3.1)
where ﬁ,(f) is the polynomial of order j associated to pi. For example, if i = ¢ — 1, then we have the quadrature formula
2n—m—-1,n— £+ 1,do, du). Since i)ﬁz_l) = X — yy—1, this q.f. is generated by the monic polynomial t;,_¢41 (i=¢ — 1

in (3.1)) given by

tat+1(X) = (X — Ye—1)Pn—t — Bt Pni—1- (3.2)
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Remark 3.1. The analysis and results of Peherstorfer [6] apply to the (2n — m — 1, n,do,du) q.f. whenn — ¢ > £. We
obtain the new (2n; — m; — 1, n;, do, du) q.f. for which n; — ¢; > ¢;. This follows from the fact thatn — ¢ > £ — i, i.e,
n—i—(—i)>¢—i.

We will in Section 5 illustrate some properties of quadrature rules of this section.

4. Special generalized averaged Gaussian quadrature rules

We will consider generalized averaged Gaussian quadrature formulas that are determined by appending one row and
one column to the matrix associated with the (¢ + 1)-node Gaussian rule for the measure do.
Consider the special case of (2.4),

&n—1—j = o and ,Bn_j = ,3]' fOI'j =0,1,...,¢£—1,
Bi—t = Bne (M=2¢—1), ie,Boy =P (m=20),
obtained by letting n = 2¢ + 1. These formulas give the averaged Gaussian quadrature formulas introduced in [2] when
Be+1 = Pesq with algebraic degree of precision 2¢ 4 2. Truncated versions of these quadrature rules, with the same algebraic
degree of precision, were considered in [4]. In this section, we will investigate when truncated averaged Gaussian quadrature
rules determined by a classical weight function w with only one more node than the associated Gaussian rule are internal.
Computed examples in Section 5 show that the results do not carry over to generalized averaged Gaussian quadrature rules
that have two more nodes than the underlying Gaussian rule.
It follows from (3.2) that the simplest truncated generalized averaged Gaussian quadrature formula

£+2

[reode =i+ L. Q=Y af ). (41)
=

is determined by the zeros 7; = rf”z) G=1,2,..., €+ 2) of the polynomial

ter2(X) = (X — atg—1)Pey1(X) — Bey1 Pe(X), (4.2)

and is associated with the symmetric tridiagonal matrix

_Ol() \/E 0
\/1?1 o \/sz

o Be—1 o \/E
VB v B+
L 0 VBey1 g

Note that the matrix]ﬁ:2 (do) is obtained from ]f ', (do) by replacing the entry o 1 in the latter by a1, or equivalently

from ij (do) by appending a suitable row and column. Due to the interlacing property of the zeros of t,., and py 1, only

the smallest and largest zeros of t;,,, denoted by 7; = rf“z) and 14y = r((fgz), respectively, may be outside the interval

[a, b]. We are interested in investigating when the quadrature rule (4.1) is internal.

Theorem 4.1. If the coefficients ay_1 and a1 in the three-term recurrence relation (2.1) satisfy ay—1 = o1, then the
quadrature formula (4.1) is internal. If ocp_1 < ap11, then (a <) tp42 < b, and if oy_1 > g1, thena < 71 (< b).

Proof. Assume thatk = £ + 1in(2.1). Then

Pe+2(®) = (X — otg41)Pe41 (%) — BeaPe(X). (44)
Subtracting (4.4) from (4.2) gives

to42(X) — Pria(®) = (@e41 — Qe—1)Pet1(X). (4.5)

If p—1 = ay41, then all zeros of ;1 (x) = pes2(X) live in (a, b). Hence, the quadrature formula (4.1) is internal.
If instead ay_1 < @41, then we obtain from (4.5) that

ter2(b) — pes2(b) = (agy1 — ag—1)pes1(b) > 0.

This implies that t;,,,(b) > 0, because p;4,(b) > 0. Therefore, ;4> < b.
Ifog—1 > a1, then it follows from (4.5) that

te12(a) — Pey2(a) = (o1 — ag—1)pes1(a). (4.6)
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If £ is even, then we obtain from (4.6) that t,5(a) > 0, since ty4(a) — pes2(a) > 0 and pyyo(a) > 0. This implies that
71 > a.If £ is odd, then it follows from (4.6) that t;;,(a) < 0, since t;2(a) — pe+2(a) < 0and pyyo(a) < 0, which implies
thatty >a. O

Corollary 4.2. Let the measure do be symmetric, i.e. do (—x) = do (x) for x € [a, b] = [—c, c], ¢ > 0. Then the quadrature
formula (4.1) is internal. If the sequence of the coefficients oy (k = 0, 1,...) in the three-term recurrence relation (2.1) is
increasing, then (a <) ty42 < b. Conversely, if the sequence of the coefficients o, (k = 0, 1, .. .) is decreasing, thena < 71 (< b).

Proof. If the measure do is symmetric, then the coefficients oy (k = 0, 1, ...) in the three-term recurrence relation (2.1)
vanish. O

In the sequel we will analyze when the quadrature formula (4.1) is internal for measures of the form do (x) = w(x) dx,
where w is one of the classical weight functions. By Corollary 4.2 the quadrature formula (4.1) is internal when w is an even
weight function, and in particular for the Gegenbauer weight function w(x) = (1 — x*)%, —1 < x < 1, with« > —1. This
weight function includes the important special cases:

(a) w(x) = 1over [—1, 1] (Legendre weight function),
b) wx) =(1— xz)‘% over [—1, 1] (Chebyshev weight function of the first kind),
() wkx)=(1-— xz)% over [—1, 1] (Chebyshev weight function of the second kind).

We now turn to some nonsymmetric weight functions.

4.1. Generalized Laguerre weight functions

Let w(x) = x*e™*, s > —1, 0n [0, 0o). For this weight function, we have

ar =20+s+1, Br=L{+5),

pe(0) = (=D ¢! (z :S> (s > —1); (4.7)

see, e.g., [10].
Assume first that £ is odd. The quadrature formula (4.1) is internal, i.e., the first zero t; of t,; satisfies t; > 0, if (cf. (4.2))

te42(0) = —otg—1Pe+1(0) — Bey1pe(0) <0,
ie, if
—atg—1Pe+1(0) < Bey1pe(0).
Dividing the last inequality by B¢41 p¢(0) (< 0), we get

—ay_1Pe+1(0) -

(4.8)
Be+1pe(0)
Substituting (4.7) into (4.8) yields
£>2—s. (4.9)

A similar analysis in the case when £ is even also gives the condition (4.9). The inequality (4.9) holds for s > 0 and for
all ¢ > 2,as well as for s € (—1, 0) and for all £ > 3. The condition (4.9) does not hold for £ = 2 and s € (—1, 0). We have
shown the following result.

Theorem 4.3. The quadrature formula (4.1) for the generalized Laguerre weight function w(x) = x*e™*, s > —1, on [0, 00), is
internal for s > 0, £ > 2, and for s € (—1, 0), £ > 3. The quadrature formula is external for s € (—1, 0), £ = 2.

We remark that the corresponding (non-truncated) averaged generalized Gaussian quadrature formula defined by
Joe—1,0-1(do, do) and discussed in [2] is internal for the generalized Laguerre weight function when s > 1 and external
fors € (—1,1) forany £ > 1; see [11].

4.2. Jacobi weight functions

Let w@P(x) = (1 —x*(1+x)¥ a, 8> —1,and —1 < x < 1. We may assume that & # S, since the case « = $ has

been discussed above. The recursion coefficients o, and S, and the values of the monic orthogonal polynomials pf{“‘ﬁ ) at the
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interval endpoints are explicitly known; see cf. [10]. We have

'32_“2

T tatPHlratpt2)
g, = YL+l +BU+a+ )
T @tatpr(@tratpr-1)
(4.10)
(7)
(1) =

(2z+a+ﬂ)’
12
PP (=1 = (=D'p ().

Assume that o> > B2. Then the sequence {ag}32, is increasing. It follows from Corollary 4.2 that 7,,, < 1.It remains to
investigate under which conditions the inequality —1 < 7; holds. We first consider the situation when ¢ is odd. Then the
quadrature formula (4.1) is internal, i.e., the first zero t; of t,,, satisfies t; > —1if(cf. (4.2))

te2(—=1) = (=1 = ag—)pe+1(=1) — Ber1pe(—1) <0,
i.e, if

—(1+op-1)pes1(—=1) < Brr1pe(—1).
Dividing the last inequality by B¢1 p¢(—1) (< 0), we get

—(1 4+ ag—1)pes1(—=1) -1

> (4.11)
Ber1pe(—1)
Define g(«, B) := (¢ + B + 2¢ 4+ 2) (@ + B + 2£ + 3). Substituting (4.10) into (4.11) gives the inequality
_ 2_ 2
[(@+B+26—2)(a+B+20+ B> —a?]ge, B) . (412)

20+ DUl +1+a)(a+B+2L =2)(a+B+20) —

Proceeding in a similar manner when ¢ is even, we also obtain the condition (4.12).
Now assume that &> < p2. Then the sequence {ae}2, is decreasing. Corollary 4.2 shows that 7; > —1. It remains to
study when the inequality 7y, < 1is valid. This inequality holds if

[(@+B+2t—2)(a+B+20) — (B —a?)]gla, B) .
20+ DU +1+B)(@+B+20—2)(a+B+20) —

where g (o, B) is defined as above.
Note that by interchanging o by g, the conditions ?> > B2 and (4.12) turn into the conditions o> < B2 and (4.13).
Therefore, in the sequel, it suffices to consider the conditions «? > 2 and (4.12) only.

1, (4.13)

Theorem 4.4. The quadrature formula (4.1) with the Jacobi weight function w@# (x) = (1—x)*(14+x)f fora, B > —1 (a #
B) and —1 < x < 1isinternal forall £ > 3.

Proof. Leta + § = s (s > —2) and « — 8 = d. Then the inequality (4.12) can be expressed as
($+20—=2)(s+20+2)(s+20)(s+ £+ 2) = dP(s), (4.14)
where
P(s) =s(s+20+2)s+20+3) + L+ D(s+20—2)(s+20)
= §% 4+ (50 + 6)s” + (807 + 12¢ + 4)s + 4¢° — 4¢,
which can be written in the form
P(s)=(6+L+2)(s+20—-2)(s+204+6) —8(L — 1)(s+ 2L+ 3). (4.15)
Assume for the moment that P(s) > 0. Since
P(s) < (s+£€+2)(s+2¢—2)(s+ 2+ 6),
a sufficient condition for (4.12) to hold is that

20+ 2)(s + 2¢ 24
d=a—ﬂ§(s+ TAEH20 a4
S+20+6 s+20+6
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12
[
a+pB+20+6
When ¢ > 3 this inequality obviously holds for all «, 8 > —1. For £ = 2 it becomes

12
— ()
a+pB+10 —
It remains to investigate the sign of P(s) for s > —2. We consider several cases:
(1°) Case £ > 6. Multiplying the inequalitiess +2¢ +6 > s+ 2 +3,s +2¢ — 2 > %(Z — 1) ands+ ¢ + 2 > 6yields

B+ —e.

B+ (4.16)

S+HL+2)(s+20—-2)(s+204+6) > ‘;—8(5—1)(S+2Z+3)>8(€—1)($+2Z+3).

It now follows from (4.15) that P(s) > O.
(2°) Case ¢ = 5. All zeros of P(x) = x> + 31x? 4 264x + 480 are smaller than —2. Therefore P(s) > 0 for all &, B.
(3°) Case £ = 4. The inequality (4.14) becomes

(s +6)(s+ 6)(s + 8)(s + 10) > d(s> + 265> + 180s + 240).

Letting d = s — 2, this inequality can be written as
12
s> + 26s% + 180s + 240 + m(2s2 + 275+ 80) > 0. (4.17)

If P(s) = s° + 2652 + 180s + 240 < 0, then it follows that s < —1.74. Thus, 8 < —0.74 and % > 9.52. Since

25%> 4275480 > 0 and the zeros of s> 4+ 265 + 180s + 240+ 9.52 - (2s® + 275+ 80) are smaller than —2, the inequality
(4.17) must hold.
(4°) Case ¢ = 3. Similarly to case (3°), the inequality (4.14) can be expressed as

4
s>+ 215> + 1125 + 96 + ﬁ(552+495+96) >0, (4.18)

while P(s) = s* + 21s®> + 1125 + 96 < 0 impliess < —1.05, 8 < —0.05 and ﬁ > 4.21. Now (4.18) holds because
55 +49s + 96 > 0 and s> + 215> 4+ 1125 + 96 4+ 4.21 - (55> +49s + 96) > Ofors > —2. O

We conclude this section with a discussion of the case £ = 2. The inequality (4.14) can be written as

f(B,s) = B(s> + 165* + 60s + 24) + 4(4s> + 255 + 24) > 0. (4.19)
Let 8 > 0.Thens > —1and B8 < s + 1. Since the left-hand side of (4.19) is linear in 8, we have for s > —1 that
f(0,s) = 4(4s* + 255+ 24) > 0, f(s+1,s) =s* 4+ 175> + 925? 4+ 184s + 120 > 0,

and it follows that (4.19) holds.
Next, if s > 0, then

P(s)=(54+2)(s+4)(s+10) —8(s+7) >8(s+10) —8(s+7) > 0.
Therefore the inequality (4.16) is valid.
Finally, assume that —1 < 8 < 0 and —2 < s < 0. The zeros of
of (B, s)
as
are given by

_16(B + 1) +2,/1982 + 53 + 64

=38s* +32(8 4 1)s + 2038 + 5)

S1 = _35
16(8 + 1) — 2,/198% + 538 + 64
Sy = 38 ,

where we note thats; > 0.The conditions, > —2is equivalentto58+8 > /1982 + 538 + 64, which in turn is equivalent

to 36(28 + 9) > 0. The last inequality is impossible. Hence s, < —2, which implies that % > 0and f(B, s) is strictly
increasing in s on (—2, 0). It follows that

fB.)>fB.p—1)=p"+138> +4782 + 47+ 12 = (B+ DB +4(B* + 88 +3).
Thus, f(B,s) > 0for B > /13 — 4 ~ —0.3944487245,
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The discriminant of the polynomial in 3,
fB.a+B) = B*+ Ba +16)8> + (3a® + 32a + 76) 8% + (o® + 160> 4 92a + 124) 8 + (16> + 100c + 96),
equals
Q (o) = 64(993a® + 242280° + 113200a* — 104000® — 102121202 — 19822000 — 1041580)

and has a unique zero op ~ —0.9419540398 in the interval (—1, 0). Since the polynomial f (83, 8 + «o) only has one zero
of multiplicity two in (—1, 0), it follows that f (8, s) > Ofor 8 € (—1,0) and @g < o < 0. We now are in a position to give
sufficient conditions for the quadrature formula (4.1), with £ = 2, to be internal.

Ifa? > B2 (e # B) and £ = 2, then we conclude that the inequality (4.12) holds whenever

12

— >0 d V13-4 .
ﬂ+a+ﬂ+10> and (B > oro > o)
If B2 > o? (o # B) and £ = 2, then we conclude that the inequality (4.13) is valid when
12
— >0 d V13 -4 .
a+a+ﬂ+10> and (o > or 8 > wp)

5. Computed examples

This section illustrates some properties and the performance of some of the quadrature formulas discussed in the
preceding sections. All examples were implemented in MATLAB and executed with about 15 significant decimal digits.

Example 5.1. This example illustrates the possibility that generalized averaged Gauss rules are external, but the associated
truncated quadrature formulas are interior. Consider the Jacobi weight function

wx) =1-x"1+xF, —1<x<1l, a=-1/2, =1.

First let £ = 3. The Gaussian rule Qf has all nodes in the open interval (—1, 1); however, the generalized averaged rule
determined by the matrix J»¢_1 ¢—1(do, do’) with do (x) = w(x)dx, proposed in [2], has a node at about 1.003.

The quadrature rule Qz(fl given by (4.1) and defined by the matrix (4.3) has all nodes in the open interval (—1, 1) in
agreement with Theorem 4.4. We remark that we also can define this quadrature rule by removing the last £ — 2 rows and
columns of the matrix Jo,—1 ¢—1(do, do’)

We turn to the quadrature rule (332 with £+42 nodes. The nodes and weights are determined by the symmetric tridiagonal

matrix obtained by removing the last £ — 3 rows and columns of the matrix J,;_1 ¢(—1(do, do’). The rule (i)z has a node larger

than unity. Hence, Theorem 4.4 cannot be extended to quadrature rules (1)2'

It is easy to construct examples for which the generalized averaged quadrature rule defined by the matrix
Jae—1.0-1(do, do) is not interior. However, often interior rules can be determined by removing only a few of the last rows
and columns. For instance, consider the weight function

wx) =(1-x%1+x7?, «o=-3/4 B=3/4,

and let £ = 4. Then the generalized averaged rule defined by the matrix J,;_1 ¢—1(do, do’) has one exterior node at about
1.006. Truncated rules obtained by removing the last k rows and columns of J,,_1 ¢—1(do, do) are interior for both k = 1
and k = 2. Similarly, when ¢ = 8, the generalized averaged rule defined by the matrix J,¢_1 ¢—1(do, do’) has one exterior
node at about 1.001. Truncated rules obtained by removing the last k rows and columns are interior fork = 5andk = 6. O

Example 5.2. We show the accuracy achieved when applying quadrature rules of the previous example to the
approximation of the integral

1
/ f)dx, f(x) = (5 — 10x) exp(x — x°). (5.1)
-1

Thus, do (x) = dx. The value of the integral is 1 — e~ 1%, Table 5.1 displays quadrature errors for the Gauss rule Q,_,G [f1(2.2), for
the generalized averaged Gauss rule Q;_1,¢—1[f] determined by the tridiagonal matrix J¢_1,¢—1(do, do), and for the rules
Ql(l)] [f]and Qz(i)z[f] defined by the symmetric tridiagonal matrices obtained by removing the last £ — 2 and ¢ — 3 rows and
columns of 5,1 ¢—1(do, do), respectively. The table shows the magnitude of the quadrature error for the rule Qy,—1 ¢—1[f]
to be about the square of the error for Qec[f] for all £-values. The truncated rules (E] [f]and Qz(i)z [f] are seen to give lower

accuracy than Qu—1 ¢—1[f], but higher accuracy than the Gaussian rule Qf [f]for all £. We conclude that the rule Qy,—1 ¢—1[f]
only should be truncated if it is important that the quadrature rule be interior. O
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Table 5.1
Errors in computed approximations of the integral (5.1).
e QI Que-1,0-11f] Al QI
4 484-107! -1.16-107% —-1.86-107" 5.19-1072
5 -1.86-107' —6.66-107* 420-1072 —-7.29-1073
6 4.20-102 5.19-107° —6.41-1073 7.09-10~*
7 —6.41-1073 —3.27-107% 6.41-107% —2.90-107°
8 6.41-1074 1.29-1077 —2.40-10"> —5.48.107°
Table 5.2
Errors in computed approximations of the integral (5.1).
¢ Q-1e1lf] Q-101lf]
4 -1.16-1072 -5.95.1073
5 —6.66 - 1074 —1.11-107*
6 5.19-107° 1.05-107°
7 —3.27-107° —6.44 - 1077
8 1.29-1077 2.75-107%
9 6.10-107° 1.40 - 107°
10 —1.85-107° —4.37-10710
11 2.30- 10710 5.61-10"
12 —2.14-107" —5.35.10712
Table 5.3
Errors in computed approximations of the integral (5.1) using the rule
Q3¢—1,e-1lf1-
Quislf] Qraalf] Q75U
5.92.107* —8.64-107° 9.00-107°
Table 5.4
Errors in computed approximations of the integral (5.1) using the rule
Q45511
Quaslf] Qisslf1 Qisslf]
—1.18-107° —2.29.1071° 4.18-10~""

Example 5.3. Starting with a symmetric tridiagonal matrix J¢ associated with an £-node Gaussian quadrature rule QF, and
the last subdiagonal entries of the symmetric tridiagonal matrix ]4£G+1' the extended symmetric matrix Joo—1 ¢—1(do, di)
can be defined in a variety of ways. In this example, we define J,,_1 ¢—1(do, du) by letting all subdiagonal entries in rows
£+4+2,¢+3,...,2¢—1bethe same as the last subdiagonal entry of]fﬂ ; the diagonal entriesinrows £+1, £+2,...,2¢—1
are chosen the same as the last diagonal entry of ]f. We denote this matrix by]vzg_l, ¢—1 and the associated quadrature rule
by 624_1,5_1. The same measure as in Example 5.2 is used. Table 5.2 displays quadrature errors. The rule 62[_1’[_1 is seen to
give a smaller error than Qy¢_1 ¢_1 for all values of £.

It may be meaningful to append the matrix jk with more rows and columns than in the computations for Table 5.2. For
instance, Table 5.3 reports results for quadrature rules with 3¢ — 1 nodes obtained by extending the tridiagonal matrix
]24_1,,5_1 by ¢ more rows and columns. The new rows and columns are analogous to the lafsvt row and column of J¢—1 ¢—1.
We refer to the associated quadrature rule as Qg({’:L({,]. This rule gives a smaller error than Qz¢_1 ¢—1 for small values of €.

Finally, we found tbat truncating the matrix Jo,_1,¢—1 by removing the last rows may give quadrature rules that yield
higher accuracy thNam Q2¢—1.¢—1[f] when £ is large. Speciﬁca}ly, we removed the ¢ — 6 last rows and columns of the matrix
Joe—1,0—1 to obtain Jy4 5 5 and the associated quadrature rule Qs 5. Quadrature errors for this rule are displayed in Table 5.4.

Tables 5.3 and 5.4 illustrate that other extensions of Gaussian quadrature formulas than the generalized averaged
Gaussian rules discussed in [11,2] may be of interest. We are presently investigating these rules. 0O

6. Conclusion

An analysis of truncated generalized averaged Gaussian quadrature formulas is presented that sheds light on whether
these formulas are interior. Computed examples show that the analysis is sharp in the sense that it cannot be generalized
to quadrature rules that are extended more than Q, D Further examples illustrate the performance of generalized averaged
Gaussian quadrature formulas and their truncations.
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