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The planar response of the bucket wheel excavator superstructure is
investigated by using a four degrees-of-freedom discrete dynamic model

where truss-like substructures are employed to model the pillar with
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counterweight arm and bucket wheel boom. Excitation is due to the
resistance-to-excavation. Four representative geometric configurations of
the excavator are examined. The fundamental frequency of the system is

most sensitive to the change of the geometric configuration, while the fourth
mode frequency is the least sensitive. The maximum displacements and
accelerations are observed when the bucket wheel boom is in its lowest

position.
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1. INTRODUCTION

The movement of earth is an intrinsic part of the mining
and construction industry. The increasing competition
and cost of inputs motivate the need to improve
productivity and efficiency, while maintaining high
safety standard. Rising demand in the last decades has
encouraged the production and use of larger, heavier
and more efficient earthmovers, such as the bucket
wheel excavator (BWE), [1] and [2]. Unfortunately, the
progress in the improvement of the performance of
BWE, especially their capacities, has not been equally
followed by improvements in the analytical or
computational methods. A good proof of this statement
are relatively frequent failures of BWE [3] to [10].

The current engineering codes and national
standards used in calculations ignore the dynamic
external load caused by resistance-to-excavation which
is both significant and periodical. For example, the DIN
22261 standard considers dynamic effects by the
introduction of the so called equivalent loads. The
intensity of the load is defined as the product of the
static load and corresponding amplifying dynamic
coefficient. While this leads to increased load intensity,
the load is still deemed static. The analysis of the
dynamic behavior of BWE is important in order to
prevent the occurrence of resonance in the system, to
create a basis to better analyze stress states in the
structural elements of the system, and to facilitate the
determination of lifetime of the excavator.

The literature on the research on the dynamics of
BWE:s is relatively sparse. A review of papers dealing
with various issues encountered in the modeling of
BWE structure and external loads caused by the
resistance-to-excavation is presented in [11] and [12].
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The papers [13] and [14] discuss stability problem in the
motion of the BWE excavating unit for the single mass
oscillatory system, while papers [15] to [17] are
dedicated to the problems of determination and
measurements of natural frequencies of the bucket
wheel excavators’ structures as well as their vibrations
during mining process.

This paper deals with the BWE SchRs 1760, whose
geometric configuration is shown in Fig. 1. The goal of
the presented study is to investigate modal
characteristics and dynamic response of the
superstructure to excitation from the resistance-to-
excavation. Participation of the system bending
vibrations in horizontal plane, as well as torsional
vibrations of the bucket wheel boom structure, in
analyzed natural modes is practically insignificant,
which allows for precise-enough description of the
system dynamic behavior from an engineering accuracy
point of view, by assuming that motion is constrained to
the vertical plane. The employed approach is twofold.
First, a model is developed to represent the external load
induced by the resistance-to-excavation. Second, by
reducing the vibrations of the bucket wheel excavator
superstructure, an extremely complex system of coupled
elastic bodies, to vibrations of the system with just four
representative degrees of freedom (DOF), it is possible
to adequately analyze the dynamic behavior of all of its
relevant substructures.

The developed models of excitation and BWE
superstructure as well as obtained results were also used
as basis for further research presented in [18].

2. MATHEMATICAL FORMULATION

2.1 Modeling the loads induced by the
resistance-to-excavation

The external loads induced by the resistance-to-
excavation are determined via the use of a model that
encompasses all relevant structural parameters and the
duty cycle parameters that are essential for the analysis
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Figure 1. Structural scheme of BWE Sch Rs 1760 / 5 x 32 with mobile conveyor: (1) lower structure with mechanism of
transport crawler (vehicular base with caterpillar track), (2) pillar, (3) counterweight arm, (4) portal, (5) bucket wheel boom
(BWB), (6) bucket wheel (BW), (7) mechanism comprising rope system for BWB hanging, (8) portal tie-rods (PTR), (9)

counterweight

of the kinematics, cutting geometry, and defining
external load of BW and BWB. A detailed presentation
of the procedure is given in [12], and its validation,
using the ideas expounded by Murray-Smith [19], is
found in [3] and [20].

The load due to the resistance-to-excavation, Fig. 2,
is defined for the case where the pit face height (hg) is
equal to the radius of the BW (rgy=6.125 m). By
moving the tangential (R;;) and normal (Ry;)
components of the resistance-to-excavation to point G
(the center of gravity of BW and drive unit) and using
the in-house developed software RADBAG [3] and
[20], the components of the principal force and moment
vectors are computed and plotted in Fig. 3.

The profiles of the forces and moments indicate the
satisfaction of Dirichlet conditions and so they are
expandable via Fourier series as

1 Smax = Jmi 1.
F(@®) ==finax +fmin)—MZ—sm(th) (D)
2 V1 n
where fe{F,,Fy.M}.
The excitation fundamental circular frequency is
given as
Q, =27 MBVIE | o)
60
where npy=4.16 rev/min is the number of revolutions

per minute of the BW and npz=14 is the number of
buckets on the BW.
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Figure 2. The loads on buckets and the BW caused by the
resistance-to-excavation
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2.2 Dynamic model of the superstructure

The pillar with counterweight arm (PA) (Fig. 4a) and the
BWB (Fig. 4b) are the most dominant of the structural
elements of the superstructure in low frequency vibrations.
This is attributable to their relatively small stiffness in
comparison to that of the portal and the slewing platform.
It is worth observing that [11] and [20] provide a detailed
procedure to reduce the continuum model of the super—
structure to a discrete model of finite degrees of freedom.

Figure 3. Components of the external non-potential loads
caused by the resistance-to-excavation: (a) vertical force,
(b) horizontal force, (c) moment
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Note that the mixed inertia coefficients of the model
shown in Fig. 4a are equal to zero [11]. The potential
energy is defined by using Clapeyron’s theorem and
expressed as

1 _
Upa=—=[a1 42)[pa] 1[fh f]z]T =
2 NG

= %[‘11 ollkealler @]

where the elements of the flexibility matrix [J,,] are

defined based on the response of the FEM model to a
unit force applied on nodes 84 and 23.

The flexural vibrations of the BWB in the vertical
plane are described by generalized coordinate g,, which
measures the perpendicular displacement of the BW
center of gravity with respect to the longitudinal axis of
the boom, Fig. 4b. The potential energy of the BWB is
defined analogously to that of the PA as

1 N
=g} =—kyql. 4
2o 94 =5 Kaads €]

(b)

Figure 4. (a) Two DOF model of the PA, (b) Single DOF
model of the BWB

The dynamic model of the superstructure is finally
set up as illustrated in Fig. 5 with the following
assumptions: (1) the influence of the portal and lower
structure which includes the mechanisms for motion are

Figure 5. A planar discrete dynamic model for the superstructure
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negligible during low frequency vibrations because of
their high stiffness when compared to the stiffnesses of
the other structural components; (2) the Young’s
modulus of the ropes (PTR and the system for hanging
the BWB) are linear and load independent; (3) the ropes
are massless flexible elements (their masses are reduced
in the corresponding nodes of the model); and (4) the
soil is undeformable.

In summary, the vibrations of the dynamic model
around the position of stable equilibrium are described
by four generalized coordinates: ¢g;- the absolute
displacement of the counterweight center of gravity, ¢, -
the absolute horizontal displacement of the pillar apex,
q; - the displacement of the point where the ropes of the
hanging system are attached to BWB, perpendicular to
the axial axis of the boom, and ¢, - the displacement of
the center of gravity of the BW with drive unit,
perpendicular to axial axis of the BWB.

2.3 Governing equations of motion

The governing equations are derived on the assumption
that the vibrations of the system around the position of
stable equilibrium are sufficiently small that the
geometric angles a, a;, a,, B and v, depicted in Fig. 5,
remain constant.

The displacement of an arbitrary point on the i-th
segment in the FEM response with a generalized
coordinate ¢,=1.0 is obtained from an enlarged portion
of Fig. 4b, which is depicted in Fig. 6. The displacement
function for the segment can be written as

Vi (%) = i (X)| g4=10 = Yix =
®)

Z it TV Yiiel T Vi
Xl ~ i

=k iX + n; ’

Xitl =X
where x; and x;,; are coordinates of the start and end
nodes of the segment, while y; and y;; are their
respective displacements measured in the direction of
generalized coordinate g,. Therefore, the corresponding
displacement of an arbitrary point K on the i-th segment
(see Fig. 6) for a given value of the generalized
coordinate g4 is y=y;,qq =(k;x+n;)qs, and its

velocity is  y=1y; .q4 =(kjx+n;)qs, where the

overdot denotes derivative with respect to time.
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Figure 7. (a) Plan of BWB velocities, (b) Velocities of the elemental mass of the i-th segment

undeformed structure

Figure 6. Local linearization of dynamic deflection line of
BWB chord

The overall velocity of the arbitrary point is a
superposition of that due to the motion of the BWB
supports (i.e., points E and A) and that due to the
velocity of the generalized velocity ¢4. If the

displacement of the hinge E in response to a unit
displacement of generalized coordinate g, is denoted by
ir, then the velocity of the hinge is igq,. Using Fig. 7,

the absolute velocity of the arbitrary point on the i-th
segment of the chord v; , can be inferred and its square

can be written as

. 2
2 .. q . T
Vl"x = |:1Eq2 +[l—3x— yi’xq4jCOS(E+aj:| +
Bl
. 2
+|:(q—3x—yl’xq4jsm(£+0l):| =
Ip 2 (6)

2.2 1 2.0 2 .0 2i . ..
=gy +—5 XG5 + i 145 —l—Ex(sma)q2q3 +
Bl B1

. . . 2 ..
2 i i (50 @) d2ds =71 14364
B1
The kinetic energy of the j-th BWB chord T,; is the
sum of the kinetic energies of the segments and those of
the concentrated masses M;. The total number of
segments is denoted by n, and each has a mass per unit
length which is denoted by m;. The total number of
concentrated masses M; is denoted by n., and they
represent the masses of the truss webs, devices and
equipment located on the boom, belt conveyor,
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conveyed material, pulleys and a portion of the mass of
ropes for boom lifting. Hence,

1 s Xi+1 5 1 Tem 5
TCh,j :EZ J. Vi,xdmi+EZMiVi =
i=1 xi i=1 (7)
15 Xit+l 5 1 Mem 5
:EZml- I Vi,xdx"'EZMiVi s
i=1 X; i=1

where viz = viz’ x is the square of the velocity of the

X=xi
concentrated mass at node i.
The system kinetic energy is given as

4
1 1 o1 .2
TZZTc-h,ijE’”BWVGJFEmlCI] t5madss (®)
J=1

where the first term on the right-hand side is the kinetic
energy of the entire chords, the second is the kinetic
energy of the BW-with-drive-unit whose mass is
denoted by mypy and the square of the velocity of its
centre of gravity (i.e., point G in Fig. 7) is
vé = Vi2 x , and the penultimate and last terms
x=lg +Hp,

present kinetic energy of the PA.

The extensions of the rope and the tie-rod (Figs. 8
and 9) are given respectively as:

AR ZiBAlAB +Algc, (a)

where

Alyg =(ig —1) gy cos(a+ B)+

a

+43 sin,b’+hllq—4cosﬁ—pcos}/, @
B2

AlBC = psinafz —q Sinal . (b)
lgc=lgc, (©) (10)

ip is the number of lines that connect the tip of portal to
the BWB, and p is the displacement of the portal tip
(node B, Fig. 9b) which is a consequence of the rotation
of the portal around the hinge D. Based on the
satisfaction of moment equilibrium conditions around
the hinge D, it can be expressed as the linear
combination of the generalized coordinates of the
system:
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Figure 9. Displacements of model reference nodes:
(a) nodes A and G, (b) node B, (c) node C
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a c d
P=—191+ﬁ612 +Lg3+-"1q,, (11
€ € € €
where

ap =cpsinggsina, —ucpsinoq, (a)
by =igucg (r—1)cos(a+pB), (b)

¢y =igucgsin B, (c)

h
dy =igucy l—lcos,B, (d)
B2

e = uch +cr sin’ o, (e)
u=igcosy—sina,. (f) (12)
Substituting Eq. (11) into Egs. (10) yields
Alpp = aqy +bqy +cq3 +dqy, (a)
Alpc = eqy + fq, + 893 + hqy , (b) (13)
where

a
a=--Lcos Y, (a)
S|

b=(ig —l)cos(a'+,b’)—b—1cos 7, (b)
i

. c
c=sin B——Lcosy, (c)
€

h d
d=—cos B—Lcosy, (d)
Ip> e

a . .
e =—1$1n0{2 —singy, (e)
gl

b
f = _ISin 0”2 5 (f)
€

c .
g="tsing,, ()
€

d
h==Lsina,. (h) (14)
€
In view of Egs. (13), Egs. (9) can be rewritten as

Ag =(iga+e)q +(igb+ f)qy +
+(igc+g) g3 +(igd +h)qy,
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A7 =eqy + fq + 893 +hqy . (b) (15)
The stiffness of the rope in the system for hanging
the BWB ¢y and the portal tie-rod cr are defined as

_ Era)yArr)
CR(T) -0 >

(16)
Irery

where Eg ) is the modulus of elasticity of rope (tie-rod),
Agm) 1s the cross section of rope (tie-rod),
Ir=iplap+Ipc+ly is the total length of rope (with the
constant [, being the rope length from the tip of the
portal to the device which equalizes forces in ropes of
two parallel systems of BWB hanging), and /7=Ip¢ is the
tie-rod length.

Noting that there are two identical and parallel
systems for hanging the BWB with the device which
equalizes forces in the ropes and two identical and
parallel PTR, the total potential energy of each
subsystem (i.e., ropes and PTR) is given as:

UR ZCRA%, (a)

Ur =cpAZ. (b) (17)

The total potential energy of the system U is simply
the sum of the potential energy of the subsystems, and it
is written as

UZUPA+UBWB+UR+UT’ (18)

Using Fig. 10, the virtual work of non-potential
active loads is given as

+(Fy cosa+ Fy sina)llgllﬂ5q3+ (19)

Bl

0,=0, (3
Q) =—igFy, (b)

g +1
0y = (Fy cosa+ Fy sina) BL—"B2 | (¢)

B1

. M
Q4 =F,cosa+Fy sma’+l—. (d)
B2

(20)

Figure 10. Non-potential loads of the model

In view of forces and moment expressions given in
Eq. (1), the vector of generalized non-potential forces is
written as

J{FV cosa+ Fy sina+£j5q4, - .
I {0} ={0o}+ 2 {Q,}sin(nex), 21
n=l1
from which the generalized non-potential forces of the h
system are obtained as where
0
1,
_EIE(FHmax +FHmin)
= Ig1 +1 .
{QO} %[(FVmax+FVmin)Cosa+(FHmax+FHmin)sma:| ’ (22)
Bl
1 . 1
E (FVmax +FVmin )COSCH'(FHmax +FHmin )Sma'l'l_(Mmax +Mmin)
B2
0
;
i(FHInax _FHmin)
nw
= lp +1 . 23
{Qn} _Briﬂ_—le[(FVmax_FVmin)COSOH'(FHmax_FHmin)Sma} 23)
B1
M -M_.
_L|:(FVmax _FVmin )cosa+(FHmax _FHmin )sina+M}
nm )
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The application of Lagrange’s principle, with the
energies (i.e., Egs. (8) and (18)) and the non-potential
force vector, Eq. (21), yields a system of governing
differential equations which are symbolically expressed
as

[m]{q}+[k]{a}={0}. (24)

and they describe the system vibrations in the vertical
plane.

To permit a detailed analysis of the system beyond
the natural frequencies and modal matrices, the
following metrics are introduced to measure the
participation of the substructures in particular mode
shapes:

U
upg =% @
U
Ugwp = 1z]w3’ (b)
Ug
up =—2=, (c
R=7 (©)
U
uT=7T. (d (25)

Attention is given to the forced vibration response
because free vibration responses are quickly attenuated
in practice due to damping. The particular solution to
the governing equations in the out-of-resonance region
is assumed as

{a,} ={a§,°)} + i{ag,n)}sin(nﬂt) . @6

n=l1

This expression is substituted into Eq. (24) to the
term its coefficients the use of which permits the
expression of the system acceleration and displacement
as

{d}={d,}=

4 (a)
:—Z_‘i(nﬂ)z[R(nQ)] {0, }sin (nQ1),
Ur =crAf{q} ={qp} = [k]_l {00} +
(b) (27

+§; [R(”Q)J_l {0, }sin(nQ1),

where [R(nQ)] = [k]— (nQ)2 [m] .
The displacement of the BW center of gravity,

including drive unit (point G), on the global system
reference axis (see Figs. 8 and 9a)

[ 2 2
PG =\ PG,x t PGy >

. Ip +1lp, . .
PG.x :quz—usm(a)% —sin(a)qy, (28)
Bl
Ip; +1
PGy :_—B]l B2 cos (&) g3 —cos(a) gy,
Bl
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and the magnitude of its acceleration

[2 2
ag =44G,x tagy >

Ip1 +1p> sin(@)d

ag,x =igds — @)y —sin(a) gy, (29)
Bl

gy =
Bl

are the major indicators of the BWE response to the
excitation caused by resistance-to-excavation. It is
suggested in [21], that the changes to the geometric
parameters of chip cross section (thickness and width)
due to the system vibrations shall not be greater than the
corresponding calculation values by 5 to 7 %. On the
other hand, it is suggested in DIN 22261 standard (part
2) that the factor to account for additional dynamic load
in vertical direction (Y-axis) of the BWB is y=0.1.
This implies an allowed acceleration value
ay per=ay per=0.1g=1.0 m/s>. The standard ignores
additional dynamic load in the X-axis by providing the
corresponding factor of additional dynamic factor

y1=yx=0.
3. NUMERICAL EXAMPLE

The analysis is carried out for the following four typical
positions of BWB: Position 1 - BWB is in its highest
position (a= —17.7°); Position 2 - BWB is in horizontal
position (0=0°); Position 3 - BWB is in “planum”
(subgrade level) position (a=15.1°); Position 4 - BWB
is in its lowest position (0=22.3°).

The system natural frequencies and the participation
of the subsystems in each mode shape are tabulated in
Table 1.

The responses of the system to excitation due to
resistance-to-excavation for the highest and lowest
positions of the BWB are depicted in Figs. 11 and 12.
Extreme values and ranges of the generalized
coordinates, displacements and accelerations of the
point G, for all characteristic positions of BWB, are
tabulated in Table 2.

4. DISCUSSION

The following inferences can be deduced from the
results presented in Table 1:

(a) In the first mode of vibrations, the influence of the
PA is dominant, with the pronounced coupling with
PTR. The frequency of the first mode increases with
increasing inclination angle of the BWB. Its value in
Position 4 is greater than in Position 1 by 8.01 %.

(b) In the second mode, a strong coupling with the PA is
observed, and the majority of the potential energy is
generated by the PTR. Further, increasing the BWB
inclination angle results in decreasing of the second
mode frequency. In Position 4, its value is 4.87 %
smaller than in Position 1.

(c) The PA is the dominant substructure in the third
mode (minimum participation of 88.70 % in Position 1
and a maximum of 95.87 % in Position 3). The change
in the third mode frequency due to the changes in the
BWB inclination angle is relatively small; its value in
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Position 3 is 3.15 % smaller than the value
corresponding to Position 1.

(d) The BWB is dominant in the fourth mode as the
combined participation of the other subsystems is less
than 5%. The fourth mode frequency is practically
independent of the BWB inclination angle.

(e) The relatively weak dependence of the natural
frequencies spectrum on the system geometry or

configuration (BWB positions) supports the adequacy of
the selection of the geometric and dynamic parameters
of the BWE superstructure.

It is observed that the generalized coordinate g, is
greatly affected by the fundamental harmonic of
excitation with negligible influence from the higher
order harmonics.

Table 1. Natural frequencies and participation of the subsystems in percentage ratio

Position | Mode Frequency Subsystem :

Hz PA BWB BWB hanging PTR

1. 0.712 63.75 0.02 5.84 30.39

| 2. 1.211 42.01 0.03 9.35 48.61

3. 4.760 88.70 2.92 1.35 7.03

4. 5.249 2.88 97.03 0.02 0.07

1. 0.745 64.31 0.01 7.73 27.95

’ 2. 1.197 37.85 0.01 13.47 48.67

3. 4.645 95.55 0.02 0.96 3.47

4. 5.231 0.01 99.97 0.01 0.01

1. 0.763 62.74 0.03 10.67 26.56

3 2. 1.170 37.17 0.06 17.99 44.78

3. 4.609 95.87 2.21 0.55 1.37

4. 5.249 2.05 97.69 0.07 0.19

1. 0.769 61.25 0.06 12.68 26.01

4 2. 1.152 38.05 0.12 20.26 41.57

3. 4.610 94.63 4.34 0.34 0.69

4. 5.268 4.10 95.45 0.15 0.30

Table 2. Extreme values and ranges
Maximum value Minimum value Range
Notation . . .
(unit) Position Position Position
1 2 3 4 1 2 3 4 1 2 3 4

¢; (mm) 66 | 112 | 142 | 153 | 09

0.1 0.3 0.2 7.5 11.1 13.9 15.1

q> (mm) 23 3.1 4.0 4.4 -0.6

0.6 0.6 0.4 29 2.5 3.4 4.0

q; (mm) 12.1 22.7 30.0 33.0 7.9

17.5 24.3 27.2 4.2 5.2 5.7 5.8

q4 (mm) 3.8 4.2 4.3 4.2 1.7

1.8 1.8 1.7 2.1 2.4 2.5 2.5

pox(mm) | 58 | 1.0 | 81 | -133 | 37

0.2 -9.0 | -14.9 2.1 0.8 0.9 1.6

pcy(mm) | -12.0 | -242 | -31.3 | -33.2 | -16.2

-30.1 | -37.5 | -39.1 4.2 5.9 6.2 5.9

pg (mm) 17.1 30.1 38.6 | 419 12.5

242 | 323 35.7 4.6 5.9 6.3 6.2

agx (m/s) | 025 | 005 | 0.17 | 0.24 | -0.25

-0.05 | -0.17 | -0.24 0.5 0.1 034 | 048

agy(m/s?) | 049 | 055 | 057 | 057 | -0.49

-0.55 | -0.57 | -0.57 | 0.98 1.1 1.15 1.14

ag (m/s?) 0.5 0.55 | 0.60 | 0.62 0.0

0.0 0.0 0.0 0.5 0.55 | 0.60 | 0.62

q; (mm) 6.6 11.2 14.2 15.3 -0.9

0.1 0.3 0.2 7.5 11.1 13.9 15.1

¢> (mm) 23 3.1 40 | 44 | 06

0.6 0.6 0.4 2.9 2.5 34 4.0

¢;(mm) | 12.1 | 227 | 300 | 330 | 7.9

17.5 24.3 272 4.2 5.2 5.7 5.8

q4 (mm) 3.8 4.2 4.3 4.2 1.7

1.8 1.8 1.7 2.1 24 2.5 2.5

Dg.x (mm) 5.8 1.0 -8.1 -13.3 3.7

0.2 -9.0 | -14.9 2.1 0.8 0.9 1.6

py(mm) | -12.0 | -24.2 | -31.3 | -33.2 | -16.2

-30.1 | -37.5 | -39.1 4.2 5.9 6.2 5.9

Table 3. Relative relations between maximum values and ranges

Maximum value Range
Notation (unit) Position Position
1 2 3 4 1 2 3 4
¢; (mm) 1.00 1.70 2.15 2.32 1.00 1.48 1.85 2.01
¢> (mm) 1.00 1.35 1.74 1.91 1.00 0.86 1.17 1.38
g3 (mm) 1.00 1.88 2.48 2.73 1.00 1.24 1.36 1.38
¢4 (mm) 1.00 1.11 1.13 1.11 1.00 1.14 1.19 1.19

320 = VOL. 44, No 3, 2016
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Figure 11. System response in Position 1: (a) generalized

coordinates and displacement of point G; (b) acceleration
of point G

The frequency of the fundamental oscillation of
generalized coordinates g, and ¢; and corresponds to the
frequency of the fundamental excitation harmonic.
Further, the response plots show secondary changes
whose frequency corresponds to the frequency of the
fifth excitation harmonic. In the plots of generalized
coordinate ¢, it is noticed that in addition to the
fundamental excitation harmonic, which causes the
fundamental oscillation, there are notable influences of
the fifth and the sixth excitation harmonics.

The maximum values and range of the generalized
coordinates change with the changes to the BWB
inclination angle from a= —17.7° (at Position 1) up to
0=22.3° (at Position 4). Taking the results at Position 1
as basis for comparison, then the relative relations can
be computed and tabulated as in Table 3. An
examination of the maximum values shows that the
generalized coordinate ¢; is the most sensitive to the
geometric configuration change (its maximum value in
Position 4 is 2.73 times that in Position 1).

The least sensitive is the generalized coordinate g,
which has a maximum value in Position 3 that is 1.13
times that in Position 1. The most pronounced change in
range is observed with generalized coordinate g; - the
value in Position 4 is 2.01 times that in Position 1.
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Figure 12. System response in Position 4: (a) generalized
coordinates and displacement of point G; (b) acceleration
of point G

5. CONCLUSION

The following conclusions are inferred from the
presented analysis:

-The PA is dominant in the first mode of vibration,
with significant participation of PTR;

-The majority of the potential energy is accumulated
in the PTR in the second mode;

-The PA is overally dominant in the third mode,
accounting for a minimum of 88.7% of the total energy;

-The energy accumulated by the BWB, more than
95% of the total energy, is greatest in the fourth mode;

-The fundamental frequency of the system is most
sensitive to the change of the geometric configuration,
while the fourth mode frequency is the least sensitive;

-The observations for the BWB tip are in agreement
with the recommended values in the literature;

-The intensity of the acceleration of the BWB tip in
the vertical direction is less than the allowed value of
1 m/s2 as given in the standard DIN 22261;

-The intensity of acceleration of the BWB tip in the
horizontal direction approaches, in some positions, 50%
of the intensity of acceleration in the vertical direction.
Note that the standard DIN 22261 assumes that the
value is negligible.
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YTUIAJ TEOMETPHJCKE KOHOUT'YPALIUJE
HA O3UB I'OPHE IT'PAJIBE POTOPHOI'
BAT'EPA

C. M. bouimak, H. b. I'waToBuh

VY pany je aHanu3upaH OI3UB TOPH-E I'Pallbe POTOPHOT
Oarepa y BepTHUKAHO] PaBHU MPUMEHOM DPEIyKOBAHOT
OMHAMHYKOT MOJENA ca YEeTUPH CTeneHa cioboxe.
[NoxcTpykType cTyba ca cTpenoM NpOTHBTEra H CTpelia
poTopa TpeTHpaHe Cy Kao HPOCTOpPHE peIleTKacTe
KoHCcTpyKumje. IloOyny y HAWHAMHYKOM MOJETy
IpeCcTaBiba OTIOP KOIAbY.

AHaNM3UpaHo je AMHAMHYKO MOHAIIAKE 33 YCTHPU
KapaKTepUCTUYHE FeOMETPHjCKEe KOH(PHTYpalyje ropmhe
rpajgmbe U Ha OCHOBY NPUKA3aHOT MCTPAXKUBAKA MOXKE
Ce M3BECTH 3aK/bydaK Ja Ha OCHOBHY ()pPEKBEHIH)Y
CUCTeMa TeOMeTpHjcka KoHQurypamuja mMma HajBehn
yTHIIAyj, JOK j€ 4YeTBPTa COICTBEHA (PEKBCHIIHja
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HajMamke OCeTJbUBAa HAa IPOMEHY pa3MaTpaHoOr yOp3ama pedepeHTHUX Tadaka CUCTEMa jaBJbajy ce IpH
nmapamerpa. MakcUMaJHE BpETHOCTH IOMepama | HajHIKEM T10JI0XKajy CTpeJie poTopa.
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