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A simple and easy to use approximate procedure, for calculating stress intensity factors,
was proposed. The procedure was developed based on existing solution for stress intensity
factor in the case of two unequal cracks in an infinite plate subjected to remote uniform
stress. The solution for this configuration was used for obtaining interaction effect coeffi-
cients which take into consideration the increase of stress intensity factor of analyzed crack
tip due to interaction with existing adjacent crack. Accuracy and application of suggested
procedure were verified through two different computer programs which are based on two
different computational methods: finite element method (FEM) with singularity elements
and extended finite element method (X-FEM). The analysis of the results has shown that a
very good agreement between solutions was achieved, and that this method can provide
stress intensity factors with acceptable accuracy.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

The continuous integrity of supporting structures of aging aircrafts is of great concern to the aviation community. The
long service life of aging aircrafts increases the possibility of diminishing, or even total loss of structural integrity due to
multiple fatigue cracks. Multiple site damage (MSD) represents the simultaneous development of fatigue cracks at multiple
sites in the same structural element. Those cracks are close enough to influence each other and to affect the overall structural
integrity. MSD often occurs in longitudinal and circumferential riveted lap joints in wings and fuselages. It can be very
serious, because of possible link up of adjacent cracks creating one large crack that can cause catastrophic failure, due to
reduction of residual strength of structural element.

The prediction of crack growth rate and residual strength of cracked structure demands accurate calculation of stress
intensity factors (SIFs). In order to predict those factors, several analytical and theoretical studies, as well as numerical
models and have been presented over the years.

Analytical procedure had been presented in which the stress function was assumed to be the sum of stress functions with
singularities on the crack faces and at the infinity and the stress intensity factors for various configurations of two-
dimensional interacting cracks in an infinite body subjected to a remote tension were given as a power series formula
[1]. Theoretical analysis followed which enabled formation of an approximate expansion polynomial expression for the
stress intensity factor [2].
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The analytical method introduced for solving stress intensity factor problems on multiple holes by Zhao et al. [3]. This
modified analytical method is easier to apply than some traditional analytical methods.

The Schwartz–Neumann alternating method, together with the boundary element method was used to determine the
mixed mode stress intensity factors and weight functions for cracks in finite bodies [4], while an alternating indirect
boundary element (AIBE) technique was used to calculate stress intensity factors for multiple interacting cracks in two-
dimensional cracked structure by Dawicke and Newman [5].

A two-dimensional plane stress elastic fracture mechanics analysis of a clap joint fastened by rigid pins was performed,
where two types of MSD are considered: MSD with equal length cracks and MSD with variable crack length and the plate
treated as being of infinite thickness. The mode I stress intensity factors and changes in the compliance due to the existence
of MSD were determined in paper presented by Beuth and Hutchinson [6].

Hybrid finite element method was used, together with complex variable theory of elasticity to calculate the stress
intensity factor at the crack tips, stress concentration factors in the stiffeners, and rivet loads for a stiffened structure with
multiple cracks [7].

Regardless of the mentioned research, there is still a lack of available solutions in case of more complex configurations
with more than few cracks. The solutions for these configurations, now more than ever, imply the usage of numerical meth-
ods, as technology and computer sciences became more available. Nevertheless, this kind of analysis can be very complicated
especially because of the mutual influence of the adjacent cracks. This is the main reason for introducing approximation
methods and procedures which will enable faster and simpler determination of stress intensity factors of supporting aircraft
structures with multiple cracks, but they were very occasional the topic of the researcher’s studies. One of the rare methods
of this kind was a compounding method for determining approximate stress intensity factors which is performed by adding
individual boundary effects, presented by Cartwright and Rooke [8]. But, the evaluation of the interaction between bound-
aries effect was very difficult, since it increases with the increase of boundary number and with the crack tip approaching to
the boundary. This significantly influenced the accuracy of the method. This method was used for the assessment of influ-
ence of the adjacent cracks for calculating the stress intensity factor in the case of multiple elliptical and through cracks that
develop from adjacent rivet holes of a thin plate by Pastrama and De Castro [9]. A simple method of stress analysis in elastic
solids with many cracks was proposed by Kachanov [10]. It was based on the superposition technique and the ideas of self-
consistency applied to the average tractions on individual cracks. This method was specialized to arbitrary length collinear
cracks with arbitrary spacing under far field tension by Millwater [11].

However, the assessment of mutual influence of the adjacent cracks remains one of the major problems for approximate
methods.

In this paper a versatile and easy to use approximate procedure for stress intensity factor determination in case of
multiple cracks is presented. This procedure takes into consideration the effect of the interaction between multiple crack tips
as corresponding coefficients, which represent the influences of adjacent cracks on stress intensity factor of analyzed crack.
The accuracy of the procedure was verified by comparison with the solutions obtained with finite element method and
extended finite element method.

2. Approximate method for stress intensity factor determination in case of MSD

The procedure was developed based on existing solutions for stress intensity factors in the case of two unequal cracks in
an infinite plate subjected to remote uniform stress [12].

For this model, normalized SIFs for crack tips A, B, C i D are calculated with following expressions:
bA ¼
KIA

K01
¼

ffiffiffiffiffiffi
2b
a1

s
� x2

A � C1xA þ C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAðxA þ xCÞðxA þ xDÞ

p ; ð1Þ

bB ¼
KIB

K01
¼

ffiffiffiffiffiffi
2b
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s
� C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xA � xC � xD
p ; ð2Þ
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bD ¼
KID
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ffiffiffiffiffiffi
2b
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s
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D þ C1xD þ C2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xDðxA þ xDÞðxD � xCÞ

p ; ð4Þ
where:
K01 ¼ r

ffiffiffiffiffiffiffiffi
pa1
p

; for crack tips A i B, and K02 ¼ r
ffiffiffiffiffiffiffiffi
pa2
p

for crack tips C i D.
Those normalized SIFs for opening mode are given as a function of dimensionless parameters xA, xC and xD, which can be

expressed as:
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xA ¼
2a1

b
; xC ¼ 1� a1

b
; xD ¼ 1� a1

b
þ 2
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b
:

Coefficients C1 and C2 are determined as:
C1 ¼
ðxA � xDÞ � KðkÞ � 2xA �Pðn; kÞ þ 2xD �Pðm; kÞ þ ðxA þ xDÞ � ½ Jðn; kÞ � Jðm; kÞ�

KðkÞ �Pðn; kÞ �Pðm; kÞ ; ð5Þ

C2 ¼
C1

KðkÞ � ½xA � KðkÞ � ðxA þ xDÞ �Pðn; kÞ� �
1

KðkÞ � ½x
2
A � KðkÞ � 2xA � ðxA þ xDÞ �Pðn; kÞ þ ðxA þ xDÞ2 � Jðn; kÞ�; ð6Þ
where K(k) is complete elliptic integral of the first kind, while P(n, k) and P(m, k) are complete elliptic integrals of the third
kind, which are given as:
KðkÞ ¼
Z p

2

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 /

q ; ð7Þ
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where t = n or t = m, and function J is defined as:
Jðt; kÞ ¼
Z p

2

0

d/

ð1þ t � sin2 /Þ
2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q : ð9Þ
Parameters n, m and k are defined as:
n ¼ xD � xC

xA þ xC
; m ¼ xA

xD
; k2 ¼ m � n: ð10Þ
On the other hand, in this case (Fig. 1) stress intensity factor (for mode I) for the first crack (for tip B which is closer to the
adjacent influential crack) will be increased due to the existence of the adjacent crack, and, as such, can be expressed as:
KI1B ¼ KI1 þ c2b � KI2; ð11Þ
where:
KI1B – total stress intensity factor for tip B of the first crack in presence of the adjacent one;
KI1 ¼ r

ffiffiffiffiffiffiffiffi
a1p
p

– individual stress intensity factor for the first crack [12,13] (only crack in the configuration);
KI2 ¼ r

ffiffiffiffiffiffiffiffi
a2p
p

– individual stress intensity factor for the second crack [12,13] (only crack in the configuration);
c2b – coefficient that takes into consideration the increase of stress intensity factor of first crack tip B, due to presence of

the adjacent crack. Index 2 refers to influence of the second crack, and index b refers to the influence of the second crack on
the stress intensity factor of the closer tip of analyzed crack i.e. in this case tip B.

If the previous equation is written as a function of geometry factors, i.e. normalized stress intensity factors (bi ¼ KIi
r ffiffiffiffiffiffip�ai
p ),

and then divided by r
ffiffiffiffiffiffiffiffi
a1p
p

, the following equation is obtained:
Fig. 1. Two unequal cracks in an infinite plate subjected to remote uniform stress.
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b1B ¼ b1 þ c2b � b2

ffiffiffiffiffi
a2

a1

r
; ð12Þ
where a1 is one half of the length of the first (analyzed) crack and a2 is one half of the length of the second (influential)
crack.

The coefficient c2b that takes into consideration the increase of stress intensity factor of crack tip B, due to the presence of
the adjacent crack, can be expressed as (for shown configuration b1 and b2 are 1):
c2b ¼ ðb1B � 1Þ �
ffiffiffiffiffi
a1

a2

r
: ð13Þ
Eq. (11) written for KI1A, can be expressed as:
KI1A ¼ KI1 þ c2d � KI2: ð14Þ
The coefficient that takes into consideration the increase of stress intensity factor of left further crack tip A, due to the
presence of the adjacent crack, now nominated as c2d (index d refers to the influence of adjacent crack on the further crack
tip of the analyzed crack which is now tip A) can be similarly expressed as:
c2d ¼ ðb1A � 1Þ �
ffiffiffiffiffi
a1

a2

r
: ð15Þ
Again, using Eq. (11), now for the second crack tips C and D, the corresponding influential coefficients for second crack
tips C and D are obtained in the same manner
c1b ¼ ðb2C � 1Þ �
ffiffiffiffiffi
a2

a1

r
; ð16Þ

c1d ¼ ðb2D � 1Þ �
ffiffiffiffiffi
a2

a1

r
: ð17Þ
It should be noticed that c1b represents the coefficient that takes into consideration the increase of stress intensity factor
of crack tip C, due to the presence of the adjacent crack, whereby index 1 now refers to influence of the first crack, and index
b refers to the influence of the first crack on the stress intensity factor of the closer tip of analyzed, second crack i.e. in this
case tip C. Also, c1d represents the coefficient that takes into consideration the increase of stress intensity factor of crack tip D,
due to the presence of the adjacent crack, whereby index 1 now refers to influence of the first crack, and index d refers to the
influence of the first crack on the stress intensity factor of the further tip of analyzed, second crack i.e. in this case tip D.

The geometry factors b1A, b1B, b2C and b2D are known and can be calculated with Eqs. (1)–(4), presented by Rooke and Cart-
wright [12].

So, according to Eq. (11), the stress intensity factor for opening mode of analyzed crack in any given configuration with n
cracks can be estimated as:
KIjA;B ¼ c1b;d � KI1 þ � � � þ cjb;d � KIj þ � � � þ cnb;d � KIn ¼
Xn

i¼1

cib;d � KIi; ð18Þ
where:
KIjA,B – represents stress intensity factor for tip A, or B of analyzed crack in presence of all other cracks in configuration;
KIi – individual stress intensity factor of all cracks in configuration, i.e., stress intensity factors of auxiliary configurations;
cib,d – the coefficient that takes into consideration influence of i-th crack on stress intensity factor of analyzed crack (if the

tip of the analyzed crack is closer to the influential crack, i.e. if it’s on the same side, the coefficient is cib, and if it is further,
i.e., if it’s on the opposite side, the coefficient is cid), and that the influential coefficient of the analyzed crack on itself is
cjb,d = 1.

In this manner the analyzed complex configuration is represented as a combination of several simpler (auxiliary) config-
urations. The number of those configurations is equal to the number of cracks, such that every auxiliary configuration con-
tains only one crack. The determination of stress intensity factor of analyzed crack is reduced to determination of the
influence that every crack in the initial configuration has on the analyzed one, as for the many configurations with one crack
the solutions for stress intensity factors are available. This influence here, as it is shown, is represented with corresponding
coefficients. For their determination Eqs. (3) and (4) can be used, but the distances between the cracks and the position of the
influential crack must be especially taken care for. Those equations, in general can be written as:
cib ¼ ðbjB � 1Þ �
ffiffiffiffi
aj

ai

r
; ð19Þ

cid ¼ ðbjA � 1Þ �
ffiffiffiffi
aj

ai

r
; ð20Þ
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where: bjB – geometry factor of analyzed crack for tip B, in the case when only analyzed crack and influence crack are present
in the configuration (determined with Eq. (1)); bjA – geometry factor of analyzed crack for tip A, in the case when only ana-
lyzed crack and influence crack are present in the configuration (determined with Eq. (2));

aj – half length of the analyzed crack;
ai – half length of the influential crack.
So, Eqs. (13) and (15)–(17), i.e. (19) and (20), with appropriate crack lengths and distance between them, can be used for

obtaining the approximate influential coefficients for any given configuration, as long as the tips of the cracks are far enough
from neighboring boundaries. Those coefficients, for vast number of crack lengths and distances between them, i.e. for their
combinations, are computed by usage of MathCAD computer program by Kastratović [14].

2.1. Numerical example

In this paper, the SIFs were determined for a typical aero structural configuration. It is a thin plate with three circular
holes subjected to uniform uniaxial tensile stress. Material of the plate is aluminum alloy Al-2024 T3 [15]. Middle hole
has two radial cracks and other two holes have one radial crack. This configuration is shown in Fig. 2.

It should be noticed that for this type of aircraft structural element, the dominant fraction of loading originates from fuse-
lage pressurisation, and thus, tension in the direction perpendicular to the middle line of the plate prevails. Hence, the deter-
mination of opening mode SIFs is sufficient enough.

Implementing Eq. (18) on this model, total stress intensity factor for crack tip B is:
KIB ¼ c1b;d � KI1 þ c2b � KI2 þ c3d � KI3 ð21Þ
Normalized total stress intensity factor for crack tip B, considering the fact that the analyzed configuration is symmetrical
(Fig. 3(a)), KI2 ¼ KI3; a2 ¼ a3, and that the influential coefficient of the analyzed crack on itself is c1b,d = 1, is:
bB ¼ b1 þ ðc2b þ c3dÞ � b2

ffiffiffiffiffi
a2

a1

r
; ð22Þ
where
c2b – coefficient that takes into consideration the increase of stress intensity factor of crack with tip B, due to presence of

the crack with tip D (on the same side of tip B),
c3d – coefficient that takes into consideration the increase of stress intensity factor of crack with tip B, due to presence of

the crack with tip C (on the opposite side of tip B).
Similarly, based on Eq. (18), total stress intensity factor for crack tip D is:
KID ¼ c1b � KI1 þ c2b � KI2 þ c3b;d � KI3 ð23Þ
and normalized total stress intensity factor for crack tip D, (the influential coefficient of the analyzed crack on itself is
c3b,d = 1) is:
bD ¼ ð1þ c2bÞ � b2 þ c1b � b1 �
ffiffiffiffiffi
a1

a2

r
; ð24Þ
Fig. 2. Analyzed configuration with multiple cracks.
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where
c1b – coefficient that takes into consideration the increase of stress intensity factor of crack with tip D, due to presence of

the crack with tip B (on the same side of tip D),
c2b – coefficient that takes into consideration the increase of stress intensity factor of crack with tip D, due to presence of

the crack with tip C (on the same side of tip D).
Special attention was addressed to determination of distances between cracks, which is very important for calculation of

influential coefficients, as already mentioned. Those distances are shown in Fig. 3, and they are determined in the same man-
ner as in [8]. When calculating the influential coefficients we consider only two crack at the same time: the analyzed crack
and the influential crack. Thus, initial configuration presented on Fig. 1 is emulated.

So, first the auxiliary configurations were established, whereby every auxiliary configuration had only one crack. Then,
the distances between the cracks were determined, as already described. Then with those distances, using Eqs. (1) and
(2) bjB and bjA (j = 1,2,3) were calculated, and they were than used for calculating c1b; c2b; c3d using Eqs. (19) and (20). Those
coefficients were computed by usage of MathCAD computer program, for a range of different crack sizes.

The auxiliary configurations used for numerical example were a thin plate with central circular hole with one radial crack
subjected to uniform uniaxial tensile stress (side holes, geometry factor b2), and a thin plate with central circular hole with
two radial cracks subjected to uniform uniaxial tensile stress (central hole, geometry factor b1).

The solutions for b1 and b2, also known as Bowies solutions, were obtained from following Eqs. (13) and (15):
b1 ¼ 0:5 � ð3� sÞ � b1þ 1:243 � ð1� sÞ3c where s ¼ a1

r þ a1
; ð25Þ

b2 ¼ b1þ 0:2 � ð1� sÞ þ 0:3 � ð1� sÞ6c � ½2:243� 2:64 � sþ 1:352 � s2 � 0:248 � s3� where s ¼ a2

r þ a2
: ð26Þ
3. Verification of stress intensity factors solutions

Further, the stress intensity factors solutions were obtained and verified by using two different computational methods:
finite element method (FEM) with singularity elements and extended finite element method (XFEM).

3.1. Finite element method

The most popular numerical method nowadays is Finite element method (FEM), which is used for SIF determination for
various structural configurations [14,16–18]. There are basically two different groups of methods for estimation of SIFs when
the FEM is concerned. They are the field (displacement and stress) extrapolation techniques (local approach) and those based
on energy (global approach). Ansys v14, the FEM software used here, uses displacement extrapolation technique, for 2D
models. To be more specific, the analysis uses a fit of the nodal displacements in the vicinity of the crack [19].

This kind of analysis demands solutions for models with cracks. The stress and deformation fields around the crack tip
generally have high gradients. To capture the rapidly varying stress and deformation fields, a very refined mesh must be used
in the region around the crack tip. This can be accomplished with so called singular elements. So, in this case, the 2D finite
element model of analyzed plate was created.
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Because Ansys v14 cannot simulate the crack growth, it was necessary to calculate SIF for vast number of cracked con-
figuration, with different crack sizes.

In order to create required finite element model, the computer code was written within the used computer program,
which enabled automatic execution of iteration procedure for obtaining required results. This code enabled geometrical
modeling, specification of material properties, application of loads, generation of finite element mesh, as well as solving
and obtaining corresponding output data. In this case the output data were stress intensity factors for given crack sizes.

The whole calculating procedure can be schematically shown in the form of an algorithm that is presented in Fig. 4.
Analysis file is an input file which containing a complete analysis sequence: preprocessing, solution, and post processing.

The file must contain a parametrically defined model using parameters to represent all inputs and outputs to be used as ran-
dom input variables (RVs), which are in this case cracks length, and random output parameters (RPs), which are in this case
stress intensity factors.

Then this analysis file is run thru Probabilistic design database, which represents the current probabilistic design envi-
ronment, which includes:

– Random input variables (RVs).
– Random output parameters (RPs).
– Settings for probabilistic methods.
– Which probabilistic analyses have been performed and in which files the results are stored.
– Which output parameters of which probabilistic analyses have been used for a response surface fit, the regression model

that has been used for the fitting procedure, and the results of that fitting procedure.

The database can be saved as Probabilistic design based database file or resumed at any time.
The probabilistic design loop file is created automatically by via the Analysis file and samples. Samples represent unique

set of parameter values that represents a particular model configuration. A sample is characterized by random input variable
values.

In each loop, the PDS uses the values of the RVs from one sample and executes the user-specified analysis (Model data-
base). The PDS collects the values for the RPs following each loop. The PDS uses the Loop file to perform analysis loops. Each
model database can be also be saved as Ansys database file, or resumed at any time.

The calculation is finally finished when models for all prescribed samples are solved, and stress intensity factor all the
cracks, with different crack lengths are obtained.
Fig. 4. Calculation algorithm (from Ansys User manual [19]).
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3.2. Extended finite element method (XFEM) for stress intensity factor in case of MSD

FEM has been used for decades for solving different engineering problems, but it has some restrictions in crack propaga-
tion simulations mainly because the finite element mesh needs to be updated after each propagation step in order to track
the crack path. Extended Finite Element Method (XFEM) suppresses the need to mesh and remesh the crack surfaces and is
used for modeling different discontinuities in 1D, 2D and 3D domains. XFEM allows for discontinuities to be represented
independently of the FE mesh by exploiting the Partition of unity finite element method (PUFEM) [20]. In this method addi-
tional functions (commonly referred to as enrichment functions) can be added to the displacement approximation as long as
the partition of unity is satisfied. The XFEM uses these enrichment functions as a tool to represent a non-smooth behavior of
field variables.

There are many enrichment functions for a variety of problems in areas including cracks, dislocations, grain boundaries
and phase interfaces. Recently, XFEM and its coupling with level set method were intensively studied. The level set
method allows for treatment of internal boundaries and interfaces without any explicit treatment of the interface
geometry.

Due to the relatively short history of the XFEM, commercial codes which have implemented the method are not prevalent.
There are however, many attempts to incorporate the modeling of discontinuities independent of the FE mesh by either a
plug-in or native support. Cenaero [21] has developed a crack growth prediction add-in Morfeo/Crack for Abaqus which relies
on the implementation of the XFEM method available in Abaqus software (the functionality of Abaqus is however limited to
the calculation of stationary cracks). Problems involving static cracks in structures, evolving cracks, cracks emanating from
voids etc., were numerically studied and the results were compared against the analytical and experimental results to dem-
onstrate the robustness of the XFEM and precision of Morfeo/Crack for Abaqus [22].

Relying on the assumptions that plate with 3 holes (shown in Fig. 3) remains in the elastic regime everywhere, and that
small-strain yielding conditions prevail in the vicinity of the crack front, the material is considered isotropic linear elastic
and the simulation is carried out under the assumptions of the linear elastic fracture mechanics (LEFM). An implicit repre-
sentation of the cracks is adopted in the spirit of the level set method.

The cracks are represented with the help of two signed distance functions that are discretized on the same mesh as the
displacement field with first-order shape functions. Method for representing the cracks in this application is exactly the
same as described in [23]. After each step of the propagation simulation, the SIFs are computed from the numerical solution
at several points along the crack fronts. Interaction integrals are used to extract the mixed-mode SIFs with the help of aux-
iliary fields.

Technique used here relies on a sub structuring approach that decomposes the computation domain into several subdo-
mains of two kinds: one or several safe subdomains, handled by the FEA code, and one or several cracked subdomains, han-
dled by the XFEM code. The latter contain elements in the vicinity of the initial cracks and in the region where they are
approximately expected to propagate.

It should be mentioned that used finite element meshes in both FEM and X-FEM, were fine enough, with adequate ele-
ment number to eliminate any doubt regarding correctness and accuracy of conducted SIFs calculations.
4. Analysis of the results

The results obtained by described approximate procedure were compared against results obtained thru calculation with
mentioned finite element softwares.

The SIFs are calculated for different models with different crack sizes for all the cracks in the configuration, but with same
crack increment for all the cracks, because the service data shows that in MSD all cracks are roughly the same length (‘‘catch-
up’’ phenomenon) [6].

The results are presented through normalized stress intensity factors (geometry factors b) for all cracks in analyzed con-
figuration denoted as in Fig. 1. The length of the cracks B and A is marked as a1, and the length of the cracks C and D is
marked as a2 (the model is symmetrical). The results are shown in following Tables 1 and 2 and Figs. 5 and 6:

As it can be seen from the graphs, there are excellent agreements between results obtained by used computer programs
and approximate procedure which uses influential coefficients, especially for cracks C and D. All differences are within 6%,
which is really remarkable considering the different methods used for calculations.

For cracks B and A, the agreements between results are also very good. The differences are within 8%, except for the initial
cracks sizes where the difference is 10%, between the Ansys and approximate procedure on the one side and Morfeo on the
other. This can be explained by the fact that the initial crack size was less than the thickness of the plate which in case of
Morfeo was modeled as 3D solid. This could be improved by better meshing of the region between the cracks and even crack
numeration.

Nevertheless, the obtained solutions for SIFs are absolutely acceptable from an engineering point of view.
Also, it should be mentioned that time for SIFs calculation in case of approximate procedure was by far less than time that

was used by Ansys and especially by Morfeo. But, only Morfeo simulate crack growth.



Table 1
Comparison of the SIFs solutions for crack tips A and B.

a1 (mm) r (mm) b (mm) a2 (mm) bB-ANS bB-method bB-xfem bA-xfem b1-Bowie b2-Bowie C2b C3d

1.00 2.4 25 1.00 1.9736 1.9490 1.8046 1.7691 1.944 1.858 0.00129 0.00117
1.60 2.4 25 1.53 1.6969 1.6584 1.6658 1.6787 1.649 1.599 0.00322 0.00275
2.00 2.4 25 1.86 1.5951 1.5424 1.6267 1.5823 1.529 1.490 0.00496 0.00406
2.60 2.4 25 2.28 1.4849 1.4289 1.5206 1.5072 1.410 1.384 0.00803 0.00618
3.00 2.4 25 2.53 1.4285 1.3778 1.4614 1.4378 1.356 1.333 0.01041 0.00769
3.60 2.4 25 2.87 1.3701 1.3234 1.4152 1.3954 1.295 1.276 0.01450 0.01005
4.00 2.4 25 3.00 1.3467 1.2960 1.3729 1.3522 1.265 1.256 0.01691 0.01124
5.00 2.4 25 3.56 1.2974 1.2546 1.3510 1.3221 1.211 1.185 0.02703 0.01608
6.00 2.4 25 4.00 1.2728 1.2323 1.3065 1.3062 1.176 1.141 0.03951 0.02094
7.00 2.4 25 4.43 1.2548 1.2242 1.3092 1.2766 1.151 1.105 0.05674 0.02658
8.00 2.4 25 4.80 1.2545 1.2262 1.2640 1.2546 1.132 1.078 0.07966 0.03268

Fig. 5. Normalized stress intensity factors for crack tips B and A.

Fig. 6. Normalized stress intensity factors for crack tips D and C.

Table 2
Comparison of the SIFs solutions for crack tips C and D.

a1 (mm) r (mm) b (mm) a2 (mm) bD-ANS bD-method bC-xfem bD-xfem b1-Bowie b2-Bowie C1b C2b

1.00 2.4 25 1.00 1.9736 1.8615 1.8091 1.7786 1.944 1.858 0.00129 0.00035
1.60 2.4 25 1.53 1.6969 1.6061 1.6146 1.6351 1.649 1.599 0.00336 0.00088
2.00 2.4 25 1.86 1.5951 1.5002 1.5470 1.5384 1.529 1.490 0.00529 0.00138
2.60 2.4 25 2.28 1.4849 1.4006 1.4195 1.4361 1.410 1.384 0.00899 0.00226
3.00 2.4 25 2.53 1.4285 1.3551 1.3676 1.3820 1.356 1.333 0.01200 0.00295
3.60 2.4 25 2.87 1.3701 1.3060 1.3414 1.3288 1.295 1.276 0.01738 0.00415
4.00 2.4 25 3.00 1.3467 1.2930 1.3402 1.3274 1.265 1.256 0.02117 0.00480
5.00 2.4 25 3.56 1.2974 1.2442 1.2900 1.2571 1.211 1.185 0.03448 0.00797
6.00 2.4 25 4.00 1.2728 1.2288 1.2357 1.2418 1.176 1.141 0.05148 0.01200
7.00 2.4 25 4.43 1.2548 1.2318 1.2521 1.2305 1.151 1.105 0.07408 0.01790
8.00 2.4 25 4.80 1.2545 1.2573 1.2431 1.2471 1.132 1.078 0.10328 0.02610
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5. Conclusion

The prediction of crack growth rate and residual strength of cracked structure demands accurate calculation of stress
intensity factors. There are some of solutions available, but only for simple geometry configurations with few cracks. On
the other hand, there is a lack of available solutions in case of more complex configurations with more than few cracks.
The solutions for these configurations require usage of finite element method, which can be very complicated. The mutual
influence of the adjacent cracks additionally increases the complexity of stress intensity factors determination. So, a simple
and easy to use approximate procedure, for calculating stress intensity factors, was proposed in this paper. The procedure
was developed based on existing solution for stress intensity factor in the case of two unequal cracks in an infinite plate sub-
jected to remote uniform stress. The solution for this configuration was used for obtaining interaction effect coefficients
which take into consideration the increase of stress intensity factor of analyzed crack tip due to interaction with existing
adjacent crack. The calculations of those coefficients were executed thru MathCAD computer program. Special attention
was addressed to determination of distances between cracks, which was very important for these calculations.

To demonstrate the capability of the proposed method, it was used for determination of stress intensity factors for a thin
plate with three circular holes subjected to uniform uniaxial tensile stress.

The accuracy of the procedure was verified by comparison with the solutions for the same model, obtained by finite ele-
ment method, where analysis demanded solutions for 2D models with cracks, and extended finite element method where
analysis allowed simulation of crack growth in 3D model.

The analysis of the results had shown that the solutions obtained by the proposed approximate procedure are in very
good agreement with the results calculated with Ansys v14 and Morfeo/Crack for Abaqus software, and that these solutions
can provide stress intensity factors of the analyzed configuration with acceptable accuracy.

It should be mentioned that, the proposed approximation method could be used for determination of stress intensity fac-
tors for 3D configurations, since it uses the known solutions for auxiliary configurations with one crack, if auxiliary config-
urations are 3D, especially for thin configurations. But in case of thicker configurations, the influential coefficients should be
determined for 3D cracks and that is the topic of this authors’ future work.
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