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In this paper, a possible solution of the basic nonlinear quadratic matrix equation was proposed. The solution is crucial in the
formulation of the particular criteria for the delay-dependent finite time stability of discrete time delay systems represented as
x(k+1) = Ag(K) + A;x(k-h). The time delay-dependent criteria have been derived. In addition, the significance of the nonlinear
discrete polynomial matrix equation is explained. With the use of the mathematical formalism based on the Traub and
Bernoulli’s algorithms, it was concluded that the computation of the dominant solvent of the matrix polynomial equation does
not guarantee a necessary convergence in all cases, unlike in the traditional numerical procedures. In this paper, we presented
one particular and one general solution valid in the case when the discrete matrix equation was presented in its factorial form.
The numerical computations are performed to illustrate the suggested results.
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Introduction

O investigate the stability of a control system, the

Lyapunov method was widely used in the control system
community. In some cases, the Lyapunov stability is
insufficient to describe the dynamical behavior of the special
classes of the systems or to give satisfactory conclusions
about the different types of stability. This is the case for the
finite time stability in which the requirements are set on the
states of the system. In these situations, there are constraints
on the system states trajectories, i.e. they have to stay within
the predefined values and should not exceed them.
Consequently, there are requirements to investigate the
trajectories of the system only over a finite time interval.
Based on the stability investigation in a limited time frame,
the described stability concept is named finite-time stability
the (FTS). In that sense, the system is stable if the states of the
system do not exceed the predefined boundaries on some
fixed time interval. This stability concept was introduced in
the era of modern control systems [1-6], and it is still widely
used nowadays.

Time delay is often present in the electrical, mechanical,
chemical, and other systems. The described latency in such
systems can potentially bring the systems into instability, or
its appearance can result in low performances during the

transient process. Using the linear matrix inequalities (LMI)
and the Lyapunov-like functional together with other
approaches, many results for time-delay systems have been
reported in the recently published literature.

In this article, we present the concept of the finite time
stability of discrete time-delay systems previously
investigated in [7].

A novel discrete Lyapunov-like functional with a discrete
convolution of the delayed states was used for the stability
investigations in that paper. The methodology used there was
to combine the Lyapunov-like approach and the Jensen’s
discrete inequality. The novel sufficient stability conditions
were presented in a form of algebraic inequalities with a
necessity of solving the particular quadratic discrete matrix
equation with the defined matrix 4.

Notations and preliminaries
Notations: The matrix transposition was denoted by a

superscript “T”. R” and R™ are the n-dimensional
Euclidean spaces and the set of all real matrices having

dimension (nxm) ,respectively. A (X ), A (X) denotes

the maximum (minimum) of eigenvalues of a real symmetric
matrix X.

! University of Belgrade, Faculty of Mechanical Engineering, Department of Control Engineering, Kraljice Marije 16, 11020 Belgrade 35, SERBIA
? University of Belgrade, Faculty of Mechanical Engineering, Department of Mathematics, Kraljice Marije 16, 11020 Belgrade 35, SERBIA

» Harvard Medical School, Medical Physics and Biophysics Division, Boston, MA, USA

9 University of Pristina, Faculty of Technical Science, Knjaza Milo3a 7, 38220 Kosovska Mitrovica, SERBIA

® Belgrade Waterworks and Sewerage System, Kneza Milosa 28, 11000 Belgrade, SERBIA

Correspondence to: Dragutin Debeljkovi¢; e-mail: ddebeljkovic@mas.bg.ac.rs



40 DEBELJKOVIC,D., etc.: ON FINITE TIME DELAY DEPENDENT STABILITY OF LINEAR DISCRETE DELAY SYSTEMS: NUMERICAL SOLUTION APPROACH

Problem formulation

A linear discrete time system with a state delay was
analyzed. The system is described as:

Ayx(k+1)= Ay x(k)+ Ay x(k—h) (1)
with a known vector function of the initial conditions:
x(j)=w(j), je{-h—-h+1,..,0} )

Where x(k)eR" is a state vector, 4 e R"™ and 4, e R™
are known constant matrices, % is a constant delay.

The initial condition (k) is the a priori known vector
function for each k e {~h,~h+1,---,0}

Definition 1. The linear discrete time-delay system (1),
which satisfies the initial condition (2), is said to be finite-

time stable with respect to {a, B, N}, a < f if

su "y <a =
ke{—h,—h?rl,m,o}‘v ( )‘I’( ) 3)
x" (k)x(k)< B,Vke{l,2,--,N}
Theorem 1. The linear discrete time delay system (1) with
Ay =1, I being identity matrix, satisfying:

X" (k= j)x(k=j)<gx" (k)x(k), @
q>0, je{-h—h+1,..,0}, Vke{l,2,,N}

is finite-time stable with respectto {a, 8, N}, a < S, if there
exist two positive scalars, ¢ and ¢, such that:

I+ ph+ ' 5+h8 v B

<=, ce(maxi{g, 0}, &),
l—gh—gilqé' a ( {1 } 2) (5)
+.1=
81’2:%’ qoh<1/4, 6,>0, i=1,2,---,h
where:

Y= A (A" A=1)+1,

8, = Ao {(A—AI)T (471) A7 (4= 4 )},

i (6)
5= ]Z 5
with matrix 4 as a solution of:
Ah+1_AhA1_A2:0’ (7

asin[7].

The unavoidable problem, in order to examine the finite
time stability of system given (1), is to solve the discrete
matrix polynomial equation (7) upon the matrix 4 .

We denote by M,, the linear space of all complex

matrices of type (nxm) and by M, the linear space of all
complex quadratic matrices of » order. We use 1 to denote
the identity matrix in M,,, n € N . If the ambiguity is possible
we denote the identity matrix 1, eM,,.

In order to be able to formulate the results of the paper we
need some definitions.

Definition 1. Spectrum of the matrix X € M, we denote

by o(X).
eigenvalue 1eo(X) is denoted by V,;(X). Algebraic

Set of the eigenvectors associated to the

multiplicity of the eigenvalue Aeo(X) is denoted by

ki (X).
Geometric multiplicity of the eigenvalue e o (X), i.e.,

dimensionality of the space ¥, (X), is denoted by g, (X).

Let linear discrete time-delay system be represented
by the equation:

Aox(k+1)=A4,x(k)+ Ay x(k—1)

x(=1),x(0) M, , ®)

The system is described by the matrices 4,, 4, and 4,,
which belong to the space M, , and by the initial conditions

x(—1) and x(0). Matrix A, is usually invertible, so that
the system can be described in its equivalent form:

x(k+1)=Ay' 4, x(k)+ 4y 4, x(k 1)
=A4"x(k)+ 4 x(k-1)=0 ©)
x(-1),x(0)eM,,

We are interested in studying the stability criterion of this
dynamical system.

The main tool in our research is the following equivalent
representation of the dynamical system.

Lemma 1. Dynamical system, described by the equation (1)
is equivalent to the following dynamical system:

X (k+1)=A4,,x,, (k)

Xeg (k) =[x (k1) XT(k)]TAeq:(A(;f AIVJ (10)

Proof. The proof is rather obvious and will be omitted.

We can easily develop the stability criterion of the
dynamical system described by (10). Actually, it is a linear
system without time-delay, and the system is stable if and
only if all the eigenvalues of the matrix 4, are in modulus
equal
to or less than 1.

Lemma 2. Dynamical system (10) is stable if and only
if for every A e o (4,,) wehave |1|<1.

The primer interest in this short paper is the algorithm for
the numerical solution of the following quadratic equation:

P(X)=AX>+BX+C=0, A4,B,CeM, (11)

over the set M,, .
The case when the matrix A is invertible is simpler, since,

in this case we can multiply from the left with 4", and geta
simplified equation:

Py(X)=X*+A4"'BX+47'C

12
=X>+By X+Cy (12)

This equation is somewhat easier to handle, and some
stronger results can be given in this case.

Definition 2. Let X eM, be such that P(X)=0.

Then we call X the (right) solvent of (11).
The set of all solvents of the equation (11) is denoted
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by S(P)={X|P(X)=0}.
Definition 3. We denote by Q(P) = {A|det(P(4))=0} the
set of complex values such that matrix P(4) is not invertible.
By k; (P) we denote algebraic multiplicity of 1€ Q(P).

The following simple Lemma gives motivation for the rest
of the paper.

Lemma3.Let Aco(X) and X € S(P) then 1€ Q(P).
Proof.If 1€ o(X), then there exists x e C"\{0}, such
that X x=Ax. Consequently:

0=0x=P(X)x=(4X>+BX+C)x
= AX?x + BXx + Cx
= A2 4Ax+ ABx + Cx
=(A’4+AB+C)x=0

it follows that 0#xeker(P(4)). P(A) has

nontrivial kernel, and is singular, and has a determinant equal
to zero.

Lemma 4. Assume that X € S(P). Then the following
factorization holds:

Hence,

P(A)=—(A(X+A)+B)(X-2) (13)
Proof. Using the direct computation, we have:
—-P(A)=P(X)-P(A)
=AX*-A*A+BX-AB
=A(X+A)(X-2)+B(X-2)
=(A(X+2)+B)-P(A)(X-2)

which finishes the proof.
Theorem 1. We have:

UXES(p)O'(X)C Q(P)~

In general, we have Q(P)\U yc5p)0(X) %D .
Let 2,eQ(P), i=1,...,n, and let xieker(P(l)),

i=1,...,n. If matrix @] x, is regular then matrix:

X =(®Lx; )diag { Ao 2 (SLix,)

is the solution of the equation (6).
Let X e S(P)and xeV,(X).

Then x e ker(P(4)).
Accordingly, V, (X) < ker(P(4)).

Proof. The first part of the Lemma is a direct consequence
of the Lemma 3.
Consider:

01
P(X)=X*-|0 0
00

— o O

Obviously we have

Q(4)=1{0,1}.

det(P(A))=4*(1-1), ie,

However S(P)={ }, i
equation P(X)=0.

The nonexistance of the solution can be proved using the
Grobner basis techniques.

Assuming there exists a solution, we get the following
system of algebraic equations:

e., there is no solution to the

X{1 + X2 X3 + Xi3. %3, =0
Xpp Xig + Xp Xy + X3 X35 =1
Xpp Xp3+ Xip X3 + X3 %33 =0
Xi1 X1+ X1 Xpp + X3 X3 :0~

X13 Xp1 + X3y + X33 X3 = 0
Xi3 X1 + Xy X3 + Xp3 X33 =0
Xp1 X31 F X1 X33 + X3 X33 =0
Xip X31 + Xy X3p + X3 X33 =0

2 _
Xi3 X3+ Xp3 X3 +x33 =1

Using the Buchberger algorithm we get that the Groebner
basis reduces to 1, which clearly shows there is no solution.
The second part is obtained using direct computation:

PO)= (013 aag 2.2 )(015) |
+B((~B:’] l)dlag{/l ,ln}(@?:l
(A(@f1 x, )diag{2;..... "}

A fre(@x))(@x )

= (e, (/12A+/13+C) J(@Lx) =0(@rx,) =0

X, )_] +C
+B((—Dl" X, )dzag{ﬁ

Suppose that xev, (X) .

Using Lemma 4, we have:
P(A)x=—(A4(X+2)+B)(X-1)x=0

We conclude x e ker(P(1)).

Hence, we have V, (X ) cker(P(4)).

Clearly, the solutions which can be constructed using the
previous Theorem include only the solutions which represent
operators of the simple structure.

However, a matrix equation can have solutions which do
not belong to this class.

Example. Consider the case in which:

p(x):(x-(é D)(X—l)

e (21 11
=5 el )

Obviously, we have at least two solutions:

11
(1) xe

P(/l):/lz—/i(é ;){é D
:((z—lf —(ﬂ—l)j
0 (a-1)

However:
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We compute det(P(/I)) :(/1—1)4, so that Q(P)={1},

and:
P(1) :(8 8)

From here, we have ker(P(1))=C">.

Choosing any two linearly independent vectors x,
x, e C?, we get the solution
X=[x, x;]diag{L,1}[x, x, ]71: 1,1.e., we cannot construct
the first solution.

Theorem 2. Assume that 4,,4, € Q(P), 4, # A, ,and that:

X e ker(P(/‘Ll )) N ker(P(/iz )) .
Then

xeker((ll +/12)A+B) and xeker(—/il Ay A+C).

If xeker(,ulA+B)
xeker(P(ﬂl))mker<P(/12)), where A, and A, are the

solutions of the equation:
A% - HiA—py=0
Proof. We have P(4,)x=P(4,)x=0.
If we subtract these two equations we get:
0=(P(4)-P(2,))x
=(41=2;)((41+4,)4+B)x

and xeker(u, A+C) then

and conclude x eker((2,+4,)4+B).
Further:
0=(A74+A4B+C)x

=4 ((A4+4,) 4+ B)x+(=2 A, 4+ C)x

= (—ﬁy] 22 A + C)X
We get the first part of the statement.
Let A be the solution of the equation 4> — ;A —u, =0.
We have:

(/12A+/13+C)x:/1(y1 A+B)x+

+(/1(/1—y1)—,u2 A)x+(/12 A+C)x=
=(A = A=) Ax=0x=0

which finishes the second part of the statement.
The previous Theorem can have a much simpler form if we
assume that 4 =1.

Theorem 3. (Monic case) Assume that 4,,4, € Q(Py)
Ay # A,,and that x e ker(PM (11 ))r\ker(PM (/12)).

Then -l —4,e0(B), xeV .4, (B), and
MAryec(C), xeV,;,;,(C).

If u, €o(B) and u,€c(C) with
xeV, (B)nV, (C)then xe ker(P(/il))mker(PUpz )) ,

where A, and A, are the solutions of the equation:

A A+, =0

Numerical solution

The presented numerical algorithm is developed in
classical literature.
Numerical algorithm, used to solve the equation

P(X)=0, is a modification of the Newfon’s algorithm
adopted to solve nonlinear equations over M,, .

In order to develop the algorithm we first need to expand P
at the point close to the solution X.

We have:

P(X +AX)= A(X +AX)’ + B(X +AX)+C
=AX*+AXAX + AAX X
+A(AX)’ +BX +BAX +C

= P(X)+ A(XAX +AX X)+BAX

If we equate P(X +AX ) with zeros and neglect the terms
in (AX )2 , we get the following equation for AX :

A(XAX +AX X)+BAX
=(AX +B)AX + AAX X =—P(X)

If we denote by FyAX =(AX +B)AX + AAX X , we can
recognize F:M, —>M, as a linear operator acting on the
space M,, . It is easily recognized as the Frechet derivative of
the nonlinear operator P: M, — M . The Newton method
goes as follows: choose X, and compute the sequence
Xy =X +AX,, ke Ny, where AX; is the solution of the
equation FyAX, =—P(X,), k € N,. The computation ends
when we achieve requested precision (X;,, —X;)<e .

However, there are some serious issues to be discussed
which are connected to the computation of AX) .

We recognize that F,AX =—P(X) is actually the

Sylvester equation. As given in [1], we know that the
Sylvester equation has a unique solution if and only if

det(A(X+/1)+B)¢O, AeR and the solutions of
det(A(X +2)+ B) are not the eigenvalues of X .

If X € S(P) then, according to the factorization given in
Lemma 4, the Sylvester equation would have a solution if n
eigenvalues of X do not belong to the remaining » solutions
of P(1)=0, and if for example 4 is nonsingular, in which

case the polynomial det(A(X + 1)+ B) has a degree n and

cannot be identically equal to zero.
This simple observation emphasizes the idea of maximal
and minimal solutions.

Definition 4. The solution X of the equation P(X) is
called maximal (minimal) if all the eigenvalues of X are
greater (smaller) in modulus than the solutions of
det(A(X+21)+B)=0.

Maximal solution is also known in the literature as a

dominant solution.
Lemma 5. Let X be the solution of the equation

P(X)=0, then Frechet derivative F, is regular.

Using the continuity argument, one can claim that there
exists some neighborhood O, (X)={Y|(X -Y) <&} of the

maximal (minimal) solution X such that the Frechet
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derivative F), is nonsingular.

That gives the argument to use the Newton method to solve
such equations.

However, as we know the existence of the dominant
solution is not always guaranteed.

Numerical solution: the Sylvester equation

The numerical method that solves the Sylvester equation
has a long history and can be tracked back to the papers of
classical literature.

Here we give the method only for the completeness.

First, we compute the generalized Schur decomposition of
the matrices 4and A X +B.

Suppose, these are given by:
dAB=G, o (AX+B)p=H

where @ and £ are unitary matrices and G, H are upper

triangular. Let also K = "X y, be the Schur decomposition
of X , with y being nitary and K upper triangular.
Then our equation becomes:

HAX+GAXK =-a'P(X)y, AX=pBAXy

Assuming that —a*P(X)jf =(Pise-sPn) and

AX =(xy,...,X, ), by equating the columns we get:
i—1

Zk,[Gxi, i=1,..

=1

(H“l‘kl',' G)X,' =pi— 1, K :(kii)

As we can see we end up in a triangular system of
equations, which can be solved easily.

Modification of the Newton method

According to the fact that in deriving the Newton method
we neglected the terms of a higher order than the one in AX
it is obvious that in some cases, X,, can be worse
approximation to the solution than X, was.

In order to avoid such scenario line searches are usually
implemented in the Newton method.

In this case the Newton method reads as follows: choose
X, ,thencompute X,,, =X, —t, AX,, ke N,,where AX,,
k € N, are the solutions to the Sylvester equation, and where
parameters ¢, e R, k € N, are suitably chosen according to
some criterion.

Actually, this modification uses the direction of AX, for
computation of X, , however, it does not allow for the

correction to be too strong.
Natural candidate for the parameter ¢, , is the one which

minimizes the norm:
() =] P(Xy +18X,) [

Various matrix norms can be used to define the function
pr - However, the particular choice of the Frobenius norm

* V2, .
HAH:(trag(A A)) is preferable in order to be able to

compute the actual value of ¢, .
Now, we can expand:
pe(0) =] P(X¢ +12x,) [
= P(X0)+ 1 Fy X, +2a(AX, H2
=|a-npx)+aax,) |
= (10| P(x)|+1 | 4(AX,) [+ (1-1)rag x
x((P(Xk ) A(AY, Y +((AX, ) AP(X, ))
oy (1=t) +y  + B2 (1-1)

where o =| P(X;) ‘2

>

Bi = trace((P(Xk ) A(AX, ) +((AX, ) ) AP(X, )j

and 7, = A(AX;) Hz )

We can assume that ¢; >0and y; >0.

Since 7, =0, reduces p, (t)=e, (1-¢)’, in which case
t, =1, which reduces to a normal Newton step.

Also, if &, =0 we come up with the solution.

The best value of #, can be found by solving numerically
p.(t)=0, and then checking at which collation of

p.(t)=0, function p, () attains its global minimum.

It has been shown that this modification of the Newton
method converges quadratically as the original Newton
method.

Conclusion

The discrete Lyapunov-like functional with a discrete
convolution of delayed states was used for the stability
investigations of finite time stability for a particular class of
time discrete systems. The methodology used in the previous
studies was to combine the Lyapunov-like approach and the
Jensen’s discrete inequality. The novel sufficient stability
conditions were presented in a form of algebraic inequalities
with a necessity of solving the particular quadratic (nonlinear)
discrete matrix equation upon certain matrix A4 .

In general, this paper provides one possible solution to the
same problem (as previously described) for a nonlinear matrix
equation. The formulation of the matrix equation was done in
a way that is able to perform the calculation using its
factorization form. These results present a natural extension of
the contributions presented in [7-12].

Some numerical methods have been presented in order to
show their applicability to this problem. The numerical example
is, also, included so that the computation could be demonstrated
when the original, suggested procedure was used.
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Stabilnost na kona¢nom vremenskom intervalu, zavisna od
kaSnjenja, linearnih diskretnih sistema sa kaSnjenjem:
prilaz sa pozicija numeric¢kog reSavanja

U ovom radu razmatra se jedno moguce reSenje bazi¢ne nelinearne kvadratne matri¢ne jednacine. To reSenje ima krucijelni
znacaj u formulisanju posebnog Kriterijuma, zavisnog od iznosa ¢isto vremenskog kasnjenja, za stabilnost na kona¢nom
vremenskom intervalu posebne klase sistema sa kaSnjenjem, opisane svojim matri¢nim modelom x(k+1)=Ay(K) + A;x(k-h).
U tom smislu izveden je i odgovarajuci kriterijum stabilnosti koji ukljucuje i iznos ¢isto vremenskog kasnjenja. Mimo toga,
posebno je apostrofiran znacaj nelinearnog diskretnog matri¢nog polinoma u stabilnosti sistema. Koriste¢i matematicki
formalizam, baziran na Traub-ovom i Bernuli-jevom algoritmu, zaklju¢eno je da sracunavanje dominantnog solventa
matri¢nog polinoma, ne garantuje potrebnu konvergenciju u svim slu¢ajevima, kao $to je slu¢aj u tradicionalnim numeric¢kim
procedurama. U ovom radu, prezentuje se jedno posebno i jedno opste resenje, koje vaZi za slu¢aj kada se matric¢ni polinom
moZe prikazati u faktorizovanom obliku. Numeri¢kim primerom ilustrovana je opravdanost predloZene procedure.

Key words: diskretni sistem, linearni sistem, sistem sa kasnjenjem, stabilnost sistema, sistem na konaénom vremenskom
intervalu, diskretna matematika, partikularno recenje, numericki rezultati.

Stabilité sur ’intervalle temporelle finie dépendante du délai des
systémes linéaires discrets a délai: tableau de solution numérique

Dans ce papier on propose la seule solution possible pour I’équation non linéaire matrice de base carrée. Cette solution est
d’importance cruciale pour formuler un critére particulier dépendant du délai pur temporel et pour la stabilité sur
Pintervalle temporelle finie de la classe particuliére du systéme a délai , décrite par son modéle matrice x(k+1)=Aq(K) + A;x(k—
h. Dans ce sens on a dérivé un critére de stabilité correspondant qui comprend aussi le délai pur temporel. A part cela, on a
souligné ’importance du polyndéme discret de matrice non linéaire dans la stabilité du systéme. En utilisant le formalisme
mathématique basé sur ’algorithme de Traub et Bernoulli on a conclu que la computation du solvant dominant du polynéme
de matrice ne garantissait pas la convergence nécessaire dans chaque cas comme par exemple dans les procédures numériques
traditionnelles. Dans ce travail on présente une solution particuliére et aussi une solution générale valable pour le cas ou le
polyndme de matrice se présente en forme factorisée . Au moyen d’un exemple numérique on a illustré la justification de la
procédure proposée.

Mots clés: systéme discret, systéme linéaire, systéme a délai, stabilité de systéme, systéme sur ’intervalle temporelle finie,
mathématique discréte, solution particuliére, résultats numériques.
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CTa0MJbHOCTH B CHCTEMAaX KOHEYHOI0 BpeMEeHHM B 3aBHCUMOCTH
0T 3a/1ePKeK, JUHEHHBIX JUCKPETHBIX CUCTEM CO 3a/IEPKKOM
BPEMEHU: IUCILICH C MOKA30M YHUCJICHHBIX pelIeHul

B aT0ii cTaThe paccMaTpUBaeTCsl 0JHO BO3MOKHOE pellieHre OCHOBHOI'0 HeJIMHEHHOT0 KBAIPATHOI0 MATPUYHOI'0 YPABHEHMUsI.
IT0 pelIeHUe UMeeT BakHelilllee 3HAYeHHe B Pa3padoTKe KOHKPETHBIX KPUTepUEB, B 3aBHCUMOCTH OT CyMMbI YHCTBIX
BpPEMEHHBIX 3a/1epiKeK, OTOM 15l CTA0MJILHOCTH B KOHEYHOM HHTEPBaJie BPEMEHH CIIENHAIBHOI0 KJIACCA CHCTEM 32/1€PKKH,
ONMMCAHHBIX UX MaTpu4HOii Moaenbio x(k+1)=A0(k) + Alx(k—h). B 3ToM cMbIc/Ie MBI TakiKe NPOBOAMIIM AJeKBATHBII
KPHUTepuii cTa0NILHOCTH, KOTOPBIH BKJIIOYAET M YHCThIA 00bEM BpeMeHHON 3ajep:kku. Kpome Toro, oco6eHHo Oblia
MOAYEPKHYTA BasKHOCTH HEJIMHEHHOTO JMCKPETHOI0 MATPMYHOI0 MHOTO4JIEHA B CTA0MJILHOCTH cucTeMbl. Mcnosib30BaHneM
MaTeMaTHYeCKOH MOJIe/IH ONUCAHHS, OCHOBAHHOH Ha anroputmax Tpay6a u BapHy/uiu, 6611 c/1e/IaH BBIBO/, YTO PACUET
JOMHUHHPYIOIIEr0 PACTBOPUTEISI MATPUYHOTO MHOTOYJIEHA, HE FTAPAHTHPYET HEOOXOIUMYI0 CXOAUMOCTH BO BCEX CIyqasXx,
KAaKOB CJIy4aii B TPaIMIMOHHBIX YHCJIEHHBIX Npoleaypax. B 3ToM ucciie10BaHuu NpeIcTaB/eHbl 0HO ClIeHUATIBLHOe U 0THO
o0lLiee perenne, KOTOPbIe OTHOCATCS K CJIy4al0, KOTJa MATPHYHbIN MHOTOYJIEH MOKHO PEICTABUTH B (JaKTOPH30BAHHOIM
¢opme. UncjieHHBIM IPUMEPOM NMOKA3aHO 000CHOBAHHUeE NMpeIaraeMoii npoueaypbl.

Kntouegvle crnosa: NUCKPETHAs CUCTEMA, JIMHEHHAS CHCTEMA, CUCTeMA ¢ BPEMEHHOI 32/1ePKKOii, CTA0UILHOCTH CHCTEMBI,
CHCTeMBbI KOHEYHOT0 BpeMeHH, AUCKPeTHAsi MaTeMaTHKa, 0c000e YacTHOe pellleHHe, YHCIeHHbIe Pe3yJbTaThl.



