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INTRODUCTION

Planing craft are by far the most common high speed 
marine vehicles that enable speeds considerably higher than 
those of displacement or semi-displacement type of vessels. 
Planing hulls have smaller resistance for speeds above FnL =
= 0.4, FnB = 0.5 or FnV = 1. For FnL, FnB and FnV around 1, 
1.5 and 3÷3.5 respectively, full planing is achieved when 
dominant hydrodynamic forces carry almost the whole weight 
of a vessel, while the buoyancy is relatively negligible. Note 
however that the vessel has to pass through three different 
regimes – displacement, semi-displacement and planing. 
To achieve this, the planing hull form, although simple, has 
certain peculiarities. Notably, it has pronounced hard chine 
(to enable flow separation), wide transom and straight stern 
buttock lines. Consequently, the planing hull-form and hull-
loading parameters also differ from those used for conventional 
displacement vessels. 

Planing craft resistance tests are rare, albeit needed, since 
misjudgements made in the early design phases may result 
in disappointing performance – something that is not so 
pronounced for the displacement vessels. Grouped calm-water 
resistance data obtained through the systematic model tests 
available in the public domain are: 
a) Series EMB 50 and Russian Series BK and MBK – both 

obsolete
b) Series 62 (Clement and Blount 1963) together with its 

modifications for higher deadrise (Keuning et al 1982 and 
1993) set the new standards in planing hull design 

c) Series 65 was developed primarily for the hydrofoils, while 
recent Series SOTON (Taunton et al 2010) was mainly 
envisaged for higher speeds and comparison with the 
stepped hulls

d) Series TUNS (Delgado-Saldivar 1993) and USCG 
(Kowalyshyn and Metclaf 2006) – both appropriate for 
contemporary planing hulls. 

Consequently, the data from the Series TUNS (Technical 
University of Nova Scotia) and USCG (United States Coast 
Guard) are used here to develop new mathematical models for 
resistance evaluation. The application zone for all planing hull 
series mentioned, as well as for the proposed mathematical 
model developed here, is shown in Fig. 1. 

The calm-water resistance needed for power evaluation 
may be evaluated:
• directly from model tests (still regarded the most reliable) 
• using Various mathematical models (usually based on the 

model tests)
• using Computational Fluid Dynamics – CFD, see for 

instance Savander et al (2010) and Garo et al (2012). 

Since model tests are expensive, and CFD-based models are 
not yet sufficiently reliable or available for every day engineering 
applications, mathematical models are indispensable. Two main 
types of mathematical models are used:
• Regression Models – for instance Radojcic (1985 and 1991) 

and Keuning et al (1993) based on the Series 62 & 65 and 
62 & 62 modified, respectively 
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• Empirical Models – amongst them Savitsky (1964) is by 
far the most frequently used. 

The Savitsky model (initially derived for prismatic hulls 
only) was improved a few times (Savitsky 2006 and 2012, 
Blount and Fox 1976) and is mainly intended for pure planing 
regime, i.e. above FnV = 3. The regression models, however, 
are used for a given hull form and in the speed range for which 
they have been derived. 

A reliable mathematical model for resistance evaluations 
for the challenging speed range – the hump speeds – of up to 
FnV = 3 or so, is clearly required. For higher speeds the Savitsky 
method seems to be reliable enough. Consequently, two speed-
dependent math models are developed: 
• Simple Model – developed through the application of 

regression analysis and based on only two dominant high-
speed parameters, i.e. the slenderness ratio L/V1/3 and FnV , 
and

• Complex Model – developed through the application 
of Artificial Neural Network (ANN) and based on five 
principal high-speed parameters, i.e. the slenderness ratio 
L/V1/3 and FnV , but also the length beam ratio L/B, the 
position of longitudinal centre of gravity LCG/L and the 
deadrise angle β. 

Both models are based on the contemporary planing hull 
forms, i.e. that of TUNS and USCG Series.

PLANING HULL PARAMETERS AND 
PERFORMANCE CHARACTERISTICS

The hull form and the loading characteristics are usually 
presented in dimensionless form and are the varied input 
parameters. The performance characteristics vary with 
speed, hence may be denoted as performance variables. The 
independent variables (or input parameters) are the hull form 
and the loading parameters, together with the dimensionless 
speed (Froude number). Note that the choice of appropriate 
planing-hull parameters that affect the performance is of utmost 
importance (see for instance Clement 1957, as the bases given 
there are still valid, also Blount 1993). 

The principal challenge is the fact that the planing craft 
has to perform in (or through) three completely different 
regimes, i.e. displacement, semi-displacement and planing. 
Different hull-form and hull-loading parameters influence the 
performance in each of these regimes. For instance, according 

to Blount’s discussion on the USCG Series (Kowalyshyn 
and Metclaf 2006), for FnV values of 1.5, 2.5, 3.5 and 4.5, the 
resistance-to-weight ratio (R/∆) depends mainly on:

For FnV R/∆ depends mainly on

1.5 the slenderness ratio (L/V1/3)

2.5 both L/B and L/V1/3

3.5 is almost independent of L/B and L/V1/3 

4.5 is dependent on L/B and L/V1/3

Furthermore, considerations of hull-form and hull-loading 
parameters are not sufficient to produce the best mathematical 
model. Practicability and ready-availability of input data to 
a potential designer, at the initial design stages, should be 
considered as well. Bearing that in mind, the following hull-
form and hull-loading parameters and performance variables 
were considered.

Hull form parameters

Ratio of length to beam is one of the hull form parameters 
that should obviously be used. According to Clement (1957) 
and the experience with the Series 62, it is obvious that the 
projected chine length Lp is better hull representative than other 
length measures (LWL or LOA for instance). Lp will be denoted as 
L from now on. The choice of Beam metric, however, is not so 
evident. In the past, the mean chine beam BPA , the chine beam 
at transom BPT , the maximum chine beam BPX , the chine beam 
at LCG etc., were all used as effective beam metrics. Taking 
into account the hull form of TUNS and USCG series (BPX is 
equal or almost equal to BPT) BPX is selected here, and is denoted 
just B. Consequently, LP/BPX = L/B.

Deadrise angle of hull bottom is also not standardized, as 
the representative β might be at LP/2, i.e. βLp/2 , at transom (βT), 
midway (βLp/2+βT)/2, at 70 % of LP forward of transom (having 
Series 62 in mind), at LCG (βLCG), at mean wetted length 
(having warped prismatic hull for the Savitsky method) etc. 
Here, the effective deadrise angle at BPX , i.e. βBpx = β is selected. 
Note that deadrise is not given in the dimensionless form. 

Other hull form characteristics, such as the longitudinal 
curvature of the hull bottom (shape of buttock lines), the 
longitudinal distribution of chine beam, the type of sections 
etc. are all assumed to be similar to that of TUNS and USCG 
series, i.e. the mathematical model is valid for hull forms 
that are similar to those of TUNS and USCG models (see 
MacPherson 1996).

Hull loading parameters 

Hull loading can be represented through the slenderness 
ratio – L/V1/3, the planing area coefficient – AP/V2/3 or the beam- 
loading coefficient – V/BPX

3 (used in the Savitsky method). The 
slenderness ratio was chosen to be the significant hull loading 
parameter, since the other two parameters are better for higher 
planing speeds. 

Longitudinal Centre of Gravity LCG is modelled here 
through the ratio LCG/LP = LCG/L relative to the transom. LCG 
is often presented as the distance of the CG from the centroid 
of area AP as percentage of LP . 

Performance characteristics
Choice of an adequate dimensionless speed parameter 

– the Froude number – is also of primary importance. Three 
Froude numbers are normally used, i.e. those based on volume 

Fig. 1. Planing-hull model resistance data available in public domain 
(adapted Schleicher and Bowles (2003) diagram)
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– FnV = v/(g·V1/3)1/2, on length – FnL = v/(g·L)1/2 and on breadth 
– FnB = v/(g·BPX)1/2 (speed coefficient Cv for Savitsky method). 
FnL and FnB are good for low-displacement and high-planing 
speeds respectively (see Blount 1993, for instance). Given 
the speed range of interest here, and that the displacement is 
a fundamental design quantity (hence figures also in L/V1/3, R/∆ 
and S/V2/3), the volume Froude number FnV is selected here for 
all further analyses. 

Evaluation of full-scale calm-water resistance at certain 
speeds is a key objective of vessel design. To enable further 
analysis, the resistance data of both series were recalculated 
and transferred to the non-dimensional form R/∆, for the high-
speed-craft standard displacement of 100000 lb or 45.36 t, i.e. 
R/∆100000, is used – from now on just R/∆. 

This enables comparison of different hull forms. Moreover, 
in practice, a comparison is easier and more logical than the use 
of some other non-dimensional metric of merit (CT for instance). 
A disadvantage, however, is that R/∆ has to be corrected for 
the displacements other than 100000 lb. Since:

R/∆ = R/∆100000 + f (S/V2/3, LK/L)
the wetted area and the length of wetted area have to be 
available. Hence mathematical models for these parameters are 
also necessary. A design procedure, when R/∆100000 is known, 
is not uncommon, and appropriate procedures can be found 
elsewhere. 

The wetted area is usually presented in the non-dimensional 
form as S/V2/3. However, the length of wetted area, needed for 
Reynolds number evaluation, is more debatable. Namely, for 
planing hulls Rn is usually evaluated by using the mean value of 
the lengths of wetted area at chine (LC) and keel (LK). For USCG 
Series, however, only LK is used. It was therefore decided to use 
LK throughout this work as the representative length of wetted 
surface for both TUNS and USCG series.

The use of LK without deeper analysis (proof that LK 
suffice) is justified by the fact that the spread of R/∆ values 
for displacements other than 100000 lb is relatively small. 
Therefore it is not necessary to determine S/V2/3 and LK/L 
with great accuracy. .For instance, if both S/V2/3 and LK/L are 
wrongly defined (by even 30 %) maximal errors of R/∆200000 
and R/∆10000 would be only around 1 % and 4 % respectively. 
If S/V2/3 and LK/L would be erroneously estimated by 10 %, 
which is much more likely, then errors of R/∆200000 and R/∆10000 
would be around 0.4% and 1.3 % respectively. These errors are 
acceptable in this type of models. 

Finally chosen parameters and performance 
variables – recapitulation

For analyses of TUNS and USCG series, as well as for the 
development of mathematical models for resistance evaluation 
(the wetted area and the length of wetted area), the following 
parameters and variables are chosen: 
• Hull form and loading parameters: L/V1/3, L/B, LCG/L and 

β (here L = LP, B = BPX, β = βBPX).
• Performance characteristics: FnV , R/∆, S/V2/3 and LK/L 

(here ∆ = V·ρ , L = LP , R/∆ = R/∆100000). 

TUNS AND USCG SERIES

The goal is to extend the applicability of the well known 
USCG Series consisting of only 4 models, with much broader but 
less well known TUNS Series consisting of 9 models. In a way, 
these two similar series should form a new series that would 
be applicable to contemporary planing hull forms. A similar 
approach was used in Hubble (1974) and Radojcic (1985). The 
database of this new series is a starting point for establishment 
of the mathematical models for resistance evaluation. The 
database, and hence the subsequent mathematical models, are 
applicable for the displacement of 100000 lb in the sea water 
ρ = 1026 kg/m3, temperature 15°C, viscosity ν = 1.1907·10-6 

m2/s and ITTC-1957 friction coefficients with CA = 0. 
Note however that although the hull shape of both series 

is relatively similar, the facilities where the series were tested 
and accordingly the size of the models belonging to each 
series are completely different. Specifically, the USCG Series 
was tested in one of the world largest model basins, while the 
TUNS experiments were performed in a small university basin 
only 27 m long. Consequently, the USCG models were much 
larger, weighting between 135 and 220 kg, while the TUNS 
models weighted between 1 and 3.5 kg only. There is no doubt, 
therefore, which results are more reliable, and therefore all 
USCG data were weighted by a factor of 2. See Morabito and 
Snodgrass (2012) regarding the usefulness of small models, 
which may be the weakest point in this work.

More about each series can be found in original publications 
(Delgado-Saldivar 1993 and Kowalyshyn & Metclaf 2006). 
Table 1 tabulates the ranges of hull form and loading parameters 
for both series. 

Tab. 1. Ranges of hull form and loading parameters 

Series L/B β L/V1/3 AP/V2/3 LCG/L FnV

USCG 3.3-4.6 18-21 5.2-6.1 4.8-9.1 0.37-0.41 0.6-6.0

TUNS 2.5-3.5 12-24 3.9-6.9 5.2-11.6 0.27-0.38 0.6-4.0

Typical (parent hull) lines plans are shown in Figs. 2 and 
3 for the USCG and TUNS Series, respectively. Note that the 
stern (or after) part of the TUNS Series is prismatic, i.e. sections 
are identical having the same deadrise, while the USCG models 
have slight variation – bottom warp and variable deadrise. The 
USCG models have also BPT slightly narrower than BPX. These 
differences are considered to be negligible, and hence were not 
accounted for, enabling the formation of a seamless database 
together with the simpler TUNS Series. 

Comparison of USCG and TUNS performance 
characteristics

A comparison of performance characteristics in the 
overlapping zone (i.e. for hull and loading parameters that are 
the same for TUNS and USCG models) follows. As expected 
the performance characteristics (in this case the dynamic 
trim τ and the resistance-to-weight ratio R/∆) for both series 

Fig. 2. Lines plan of USCG parent hull
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should be the same. Direct comparison of the performance 
characteristics is not possible since the models of each series 
had slightly different hull and loading parameters. Nevertheless, 
appropriate interpolations preformed within each series enable 
comparison. Typical results are shown in Figs. 4 and 5 for τ 
and R/∆ respectively.

In the overlapping zone, the τ values disagree to a great 
extent regardless of the kind of interpolation used. The R/∆ 
values, however, agree quite well. Generally, TUNS hump 
and below-hump values of R/∆ are slightly higher (than those 
of USCG). The depicted diagrams (and many more) are very 
convincing, so the development of a mathematical model for 

Fig. 3. Lines plan of TUNS parent hull

Fig. 4. Typical τ values in the overlapping zone Fig. 5. Typical R/W values in the overlapping zone
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evaluation of τ was abandoned, while the development of R/∆ 
mathematical model continued. 

The τ values are obviously important, as τ and R/∆ mirror 
each other. This does not have to be the case with mathematical 
models based on model experiments. The Savitsky empirical 
model, mainly for planing speeds, is even dependent on τ. 
It should be noted that disagreements between τTUNS and τUSCG 
seem to be systematic but rationalization of these disagreements, 
however, is beyond the scope of this paper. 

Database for development of mathematical 
models for R/∆ evaluation 

The database needed for the development of the mathematical 
model for R/∆ evaluation (for ∆ = 100000 lb) can be generated 
on the conclusions reached so far. Few additional comments 
are needed:
• TUNS runs (data-points) which a) were incomplete (without 

S/V2/3 and LK), b) where porposing appeared or c) were 
obviously erroneous, were excluded from the database.

• For TUNS models the wetted length was calculated as 
(LK+LC)/2, while for the USCG models it was only LK 
(LC was not available). 

• For the USCG models, the representative β = βBpx was taken 
to be 18 and 21 degrees (at Station 7.5), and not 20 and 23 
degrees (often stated values) which is at Station 6. 

• For the USCG models LP was estimated from the lines plan, 
while for the TUNS it was calculated as LP = LOA·0.912 
(as suggested in the original Report). 

All R/∆ = f(FnV) curves that were taken into account are 
shown in Fig. 6. Note that the final FnV range is narrower and 
is between 0.6 and 3.5.

Fig. 6. R/∆ = f(FnV) curves taken into account for forming the database

ON APPLICATION OF ARTIFICIAL 
NEURAL NETWORK AND REGRESSION 

ANALYSIS 

Two methods for development of mathematical models for 
resistance (R/∆) evaluation were applied:
• Regression analysis for development of a Simple 

mathematical model and
• Artificial Neural Networks (ANN) for development of 

a Complex model.

In this section these two methods will be briefly compared 
from the mathematical model-maker’s viewpoint. 

When the regression analysis is applied, the independent 
variables consist of two sets of input data: a) Basic independent 

variables (hull parameters in this case), and b) Various powers 
and cross-products of powers of basic independent variables. 
Hence the initial polynomial equation can easily have 100 
or more terms, although the number of basic parameters are 
usually around 5. If some hull’s characteristic is not represented 
directly through the basic hull parameters, it will be represented 
indirectly through one of many polynomial terms that appear in 
the initial equation. Then, by applying a step-by-step procedure 
and statistical analysis, a best subset is chosen and less 
significant variables are rejected, ending with finally adopted 
equation which has considerably less independent variables; 
of the order of 10 to 20.

In contrast to the regression analysis, with the ANN method, 
more attention is paid to selection of independent variables. 
Specifically, the independent variables should be carefully 
chosen at the very beginning, because the final model will 
be based on the selected input parameters which form the 
input layers (Xk) for ANN. Incorrectly selected independent 
variables could result in an erroneous mathematical model, i.e. 
dependent variable (R/∆) may be insensitive to the variations 
of a wrongly selected input variable. On the other hand, if 
a larger than necessary number of independent variables is 
assumed, validation of model stability becomes considerably 
more complex.

The artificial neural network which is used here (Rojas 1996, 
Miljkovic 2003, Zurek 2007) is of a feed-forward type with 
a back-propagation algorithm. The network can be expanded 
up to eight layers. Three types of activation functions, in which 
data are processed within the neurons, could be chosen: linear 
function, sigmoid function and hyperbolic tangent function. 
Sigmoid and hyperbolic tangent functions were thoroughly tested 
and the sigmoid function (sig = 1/1 + e-x) was finally adopted 
since it produced better results. Both, the number of activation 
functions (3) and the number of layers (8), are limitations of the 
program that was used – aNETka 2.0 (see Zurek 2007).

Selection of the number of layers and number of neurons 
within each layer is very important, since when the equation 
becomes too complex instability might occur. Once the network 
configuration is adopted, the number of polynomial terms of 
a model can be pre-determined from the following expression 
(Simic 2012):

where N represents the number of layers in the network and ai 
is the number of neurons in each layer. So, for the mathematical 
model used here for evaluation of R/∆ (see below), the network 
is composed of five layers with configuration 5-7-5-3-1 (see 
Fig. 7), and the number of polynomial terms is:

bc = [(a1 + 1) · a2] + [(a2 + 1) · a3] + [(a3 + 1) · a4] +
+ [(a4 + 1) · a5] + 2(a1 + a5) = [(5 + 1) · 7] +

+ [(7 + 1) · 5] + [(5 + 1) · 3] +
+ [(3 + 1) · 1] + 2(5 + 1) = 116

Obviously, in order to find a ‘good’ solution, whether 
assessed in terms of accuracy, reliability or applicability, the 
number of layers and number of neurons in each layer has to 
be chosen by the model-maker in advance.

It should be noted that it is common practice to omit from 
the database the data that is intended to be used for verification 
of the reliability of the network. Consistent with the prior 
experience (for instance Simic 2012), the entire database was 
used for training of the algorithm, but considerable effort was 
invested in checking the reliability and stability of the derived 
mathematical model. 
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MATHEMATICAL MODELS

Simple mathematical model for R/∆ evaluation

The objective is to plot R/∆ = f(L/V1/3, FnV) relationship, 
based on TUNS and USCG data, and to compare this with the 
well known diagram based on the Series 62 and 65, published 
in Hubble (1974), see Figure 8. 

Fig. 8. Mean values of R/∆ from Series 62 and 65 data (Hubble, 1974)

This was done using the regression analysis options in 
Microsoft’s Excel. The procedure, also used in Radojcic (1997), 
is the following: 
a) Speed-dependent equations (with the same variables for 

all slenderness ratios) are developed first. Namely, the data 
having the same L/V1/3 were grouped, regardless of the other 
hull form and loading parameters. 16 groups were formed. 
Then a trend line R/∆ = f(FnV) was produced (a cubic 

parabola y = A·x3+B·x2+C·x+D) for each group. Figure 9 
shows the results for L/V1/3 = 3.90; 5.46 and 6.87. 

b) A second regression analysis is then performed with the 
regression coefficients cross-faired against the slenderness 
ratio. So, four new diagrams are then formed, one for each 
coefficient, i.e. A, B, C, D = f(L/V1/3). See Figure 10. 

Fig. 9. R/∆ = f(FnV) for L/V1/3 = 3.90; 5.46 and 6.87

Thus, the first step develops speed dependent equations for 
discrete L/V1/3 values. The second step extracts FnV and L/V1/3 

dependent equations – represented as a surface R/∆ = A·FnV
3+ 

B·FnV
2+ C·FnV+ D, as shown in Figs. 11 and 12. The diagram 

in Fig. 11 is obviously comparable to the one in Fig. 8.
A similar procedure is repeated for S/V2/3 and LK/L – as 

needed for evaluation of R/∆ for displacements other than 
100000 lb. See resulting Figs. 13 to 16.

Given the scattered initial data and coefficients, as shown in 
Figs. 9 and 10 respectively, it is amazing that exceptionally nice 
diagrams can be produced using a simple procedures available 
in Excel. Power of statistics and regression is also confirmed. 
Moreover, having the R/∆ = f(L/V1/3, FnV) relationship is very 
useful, especially during the concept design phases when 
hull form parameters are typically unknown but the relation 

Fig. 7. ANN structure of finally adopted R/∆ mathematical model 
(configuration 5-7-5-3-1 with 3 hidden layers)
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Fig. 10. Regression coefficients A, B, C and D cross-faired against L/V1/3

Fig. 11. Mean values of R/∆ from Series USCG 
and TUNS data – 2D diagram

Fig. 12. Mean values of R/∆ from Series USCG 
and TUNS data – 3D diagram

Fig. 13. Mean values of wetted area coefficient S/V2/3 
from Series USCG and TUNS data – 2D diagram

Fig. 14. Mean values of wetted area coefficient S/V2/3 
from Series USCG and TUNS data – 3D diagram

between the vessel length and weight is desired. Nevertheless, 
users are reminded that the Simple model is a single parameter 
formulation and that resistance predictions are of reduced 
quality when hull parameter boundaries other than that of 
slenderness ratio are approached. 

Coefficients A, B, C and D for evaluation of R/∆, S/V2/3 and 
LK/L are given in Appendix 1.
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Fig. 16. Mean values of length of wetted area LK/L 
from Series USCG and TUNS data – 3D diagram

Fig. 15. Mean values of length of wetted area LK/L 
from Series USCG and TUNS data – 2D diagram

Complex mathematical model for R/∆ evaluation

ANN possibilities, procedures etc. were explained in the 
previous section. This section explains the development of the 
Complex mathematical model (vs. the Simple Model previously 
explained) for the evaluation of:
• R/∆ = f(L/V1/3, FnV , L/B, LCG/L, β), 
• S/V2/3 = f(L/V1/3, FnV , L/B, LCG/L) and 
• LK/L = f(FnV , LCG/L). 

The last two variables are obviously simpler, so the 
procedure for the R/∆ model is explained in more details, but 
the results for all three variables are given. 

Several mathematical models for R/∆ were derived and 
tested, see Table 2. Considerable time was spent for stability 
checks of the derived models (oscillations in results for 
values between data points used for the mathematical model 
derivation). Several derived models with several hundred terms 
produced good results but were rejected as too complex and 
impractical for a user/designer. The finally adopted model with 
116 polynomial terms follows:

where:
XK = {L/B, L/V1/3, FnV , LCG/L, β}
Y = R/∆ 
G, H, Pk , Rk , Akj , Bji , Ciw , Dwv , aj , bi , cw , dv are the coefficients.

Tab. 2. Configurations of tested mathematical models for R/∆ evaluation

No. of terms No. of hidden layers No. of considered M.M. RMS*) FnV

400 ÷ 750 4 30 2.6 ÷ 3.6 0.6 ÷ 6.0
200 ÷ 250 1 to 4, mainly 3 20 3.7 ÷ 5.3 0.6 ÷ 6.0
150 ÷ 200 1 to 4, mainly 3 29 4.2 ÷ 5.7 0.6 ÷ 6.0
80 ÷ 150 1 to 3, mainly 2 21 4.6 ÷ 5.9 0.6 ÷ 6.0

116 3 Finally adopted M.M. 5.43 0.6 ÷ 6.0
*) RMS - according to aNETka. Manually calculated RMS is slightly different.

Note that no additional screening of obviously wrong data was done even after the derivation of the final model which clearly 
highlighted outliers. If that step was introduced and a new math model was then derived, the RMS would be considerably lower. 
Nevertheless, the quality of that model would be just about the same as of one used here. The RMS value is actually irrelevant, 
and is used only for the comparison of various models based on a same database. 

26 models were derived for the wetted area coefficient (S/V2/3), and the one finally selected has 23 polynomial terms with 
RMS of around 10 %.

where:
XK = {L/B, L/V1/3, FnV , LCG/L}
Y = S/V2/3 

G, H, Pk , Rk , Akj , Bji , aj , bi are the coefficients. 
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A simple speed-dependent relation was required for the 
length of wetted area (LK/L). There was no need to use ANN, it 
was derived simply by the application of the regression analysis. 
The finally selected mathematical model has 16 polynomial 
terms with RMS of around 9 %. 

For all three equations, polynomial coefficients are given 
in Appendix 2. All three equations are approximately valid for 
the following range:

3.9 ≤ L/V1/3 ≤ 6.9
2.5 ≤ L/B ≤ 4.7
0.6 ≤ FnV ≤ 3.5

0.27 ≤ LCG/L ≤ 0.41
12 ≤ β ≤ 24

The boundaries of applicability of the models are depicted 
in Fig. 17, while the boundaries suitable for programming are 
given in Appendix 2. The boundaries are actually the surfaces 
which bound the multidimensional space. 

The boundaries of applicability (Fig. 17) require additional 
discussion. Note: 
a) TUNS and USCG Zones are formed according to hull-form 

and loading parameters of each particular model (dots) that 
form the series. Shown is Overlapping Zone as well.

b) Unreliable Zone (seen on the β = f(LCG/L) diagram only) is 
the zone where the mathematical model gives good results 
(the test data are well represented by the mathematical 
model) but the data is not logical, i.e.is most probably 
erroneous. 

c) Rejected Zones (seen on the β = f(LCG/L) and L/B =
= f(LCG/L) diagrams) are the zones where the mathematical 
model is unstable (gives relatively bad results with saddles 
and humps for the interpolated values). 

d) Lines denote the boundaries of applicability (borders) of 
the mathematical model (adjacent numbers indicate simple 
linear equations given in Appendix 2).

Discussion concerning 
complex mathematical model

The number of terms (116) in the polynomial seems 
large, but it should be noted that the Froude number is one 

Fig. 17. Boundaries of mathematical model applicability (Boundaries suitable for programming are given in Appendix 2)
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of independent variables. In comparable speed-independent 
mathematical models, for instance Radojcic (1991), R/∆ is 
evaluated for each Froude number separately, so for FnV range 
of up to 3.5 around 120 terms were needed (around 15 for 
each equation). In Radojcic et al (1997) speed-independent 
and speed-dependant math models were derived, albeit for 
semi-displacement NPL Series, both having around 150 
polynomial terms. A disadvantage of speed-independent 
models, although often more accurate for one speed, is that the 
resistance computed at one speed is not directly linked to that 
at another speed. So to obtain R/∆ = f(FnV) curve, smoothing 
is often necessary. 

Note that both, Simple and Complex mathematical models 
for LK/L, have the same number of polynomial terms and 
that the input variables – besides FnV – are L/V1/3 and LCG/
L respectively, i.e. both model types depend on only two 
variables. Nevertheless, the second one is more accurate (RMS 
is 9 % vs. 16 %), confirming that LCG/L is more influential 
parameter for LK evaluation than L/V1/3. 

More than a thousand 2D and 3D diagrams were constructed 
in order to check the quality of the derived mathematical model 
and the suggested boundaries of applicability. This facilitated 
examination of the 6-dimensional R/∆ surface from different 
angles. Some of typical diagrams deserve discussion. For 
instance, the diagrams depicted in Figs. 18 to 21 illustrate 

the correlation between the mathematical model and real 
experiments on the boundaries of applicability, where the match 
should be lower than in the middle of the applicability zone. 

Discrepancies are obviously small. Moreover, it is almost 
certain that the mathematical model smoothed out some 
erroneous measurements, as for instance those in Fig. 19. In 
the same diagram, for instance, the discrepancies (measured 
to modelled) for FnV values of 0.6, 1.6 and 3.4 are 23 %, 12 % 
and 4 % respectively. 

Note that the reliability of some TUNS data is questionable. 
In some cases there were just a few erroneous points which 
could easily be disregarded. But in other cases there were 
complete measurement sets that were obviously erroneous and 
not logical; see for instance Fig. 22 (curve for β = 18 is below 
β = 12, which is impossible). Often the mathematical model 
followed those erroneous data-points, see Fig. 23 which is 
typical for the so called Unreliable Zone. 

Fig. 21. R/∆ tested and evaluated on applicability boundaries

Fig. 18. R/∆ tested and evaluated on applicability boundaries

Fig. 19. R/∆ tested and evaluated on applicability boundaries

Fig. 20. R/∆ tested and evaluated on applicability boundaries 

Fig. 22. Experimental R/∆ data for β = 12°, 18° and 24° in the unreliable zone

Fig. 23. R/∆ tested and evaluated in the unreliable zone
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The reasons for the appearance of the Rejected Zone are 
typically depicted in the Fig. 24 where the saddle was avoided by 
reducing part of the applicability zone. Namely, the mathematical 
model unsatisfactorily followed the experimental data.

Fig. 24. Reduction of the applicability zone due to saddle 

Figs. 25 and 26 depict the discrepancies in the middle of the 
applicability zone. As with the previous diagrams (Figs. 18-21 
and 23), the agreement between the TUNS and USCG Series 
R/∆ values and those obtained by the mathematical model is 
fairly good. The mathematical model produced results that 
made more logical sense than the measurements due its inherent 
smoothing capabilities.

Fig. 26. R/∆ tested and evaluated in the middle of applicability zone 

The quality of the derived mathematical model within the 
boundaries of applicability is described by 3D diagrams in 
Figs. 27 to 34. The presented cases are chosen ad hoc, with 
intention to provide the evidence that there were no instabilities 
in the model. So, 
• Figs. 27 and 28 describe the influence of L/V1/3 variation
• Figs. 29 and 30 describe the influence of LCG/L variation 
• Figs. 31 and 32 describe the influence of β variation 
• Figs. 33 and 34 describe the influence of L/B variation. 

Note that the diagram in Fig. 34 looks a bit wavy, and 
hence needs additional examination as shown in Figs. 35 and 
36. Namely, the 3D diagram shown in Fig. 35 has L/V1/3 = 5.2, 
which is close to L/V1/3 = 5.5 of the 3D diagram in Fig. 34 (all 
other parameters being the same). For L/V1/3 = 5.2, however, 
there are test data curves (R/∆ = f(FnV) of USCG models 5628, 
5629 and 5630 with L/B = 3.37, 4.17 and 4.66 respectively. 
These are drawn on the surface evaluated by the mathematical 
model (see Figure 35). 

Obviously, the discrepancies between the test-data (lines) 
and the mathematical model (surface) are small. This is 
illustrated better in Fig. 36. So, the mathematical model 
describes the USCG test data very well. The model test-data 
for R/∆ of TUNS Series, however, are slightly different (see 
Figure 5), and hence strongly influence the surface for L/B 
values below 3.37, resulting in a hollow for L/B above 2.5 and 
below 3.37. In other words, the merger between the TUNS and 
USCG Series is not seamless. This is unavoidable drawback 
when two series are merged to form a new series, actually 
a joint data-base. 

Note that some future mathematical model may be more 
accurate and have slightly broader boundaries of applicability. 
But it cannot be expected that it would be much better, since 
mathematical models cannot be more accurate than the 
measurement data they are based on, and, as already stated, 
some of the baseline data is obviously erroneous. Ergo, 
derivation of better models requires better measured data. 
Note, however, that a few erroneous measurements do not 
compromise the validity of the entire TUNS Series.Fig. 25. R/∆ tested and evaluated in the middle of applicability zone
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Fig. 27. The influence of L/V1/3 on R/∆ Fig. 28. The influence of L/V1/3 on R/∆

Fig. 30. The influence of LCG/L on R/∆ Fig. 29. The influence of LCG/L on R/∆

Fig. 31. The influence of β on R/∆ Fig. 32. The influence of β on R/∆
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Fig. 34. The influence of L/B on R/∆Fig. 33. The influence of L/B on R/∆

Fig. 36. Discrepancies between evaluated and tested R/Δ data of USCG 
models 5630, 5629 and 5628

Fig. 35. R/∆ = f(FnV) curves of USCG models 5630, 5629 and 5628 drawn 
on the surface evaluated by the mathematical model

VERIFICATION OF THE MATHEMATICAL 
MODELS 

The goodness of fit of both Simple and Complex mathematical 
models will be demonstrated for two planing hull models:
• TMB Model No. 4876 (SNAME Small Craft Data Sheet 

No. 14)
• TUNS Model 3018 (loading cases which were excluded 

from the database).

TMB Model No. 4876 represents Ray Hunt’s deep-V design 
of 52 ft LCSR (Landing Craft Swimmer Reconnaissance) and 
has chine and spray strips, as shown is Fig. 37. Calm-water 
test-data for resistance is given for a model of 3.25 ft, weighting 
11.26 lb (see Figure 38). This figure also shows R/∆ evaluated 
using the Simple and Complex math models (evaluated for 
LCSR input parameters and scaled down to the same test 
conditions). Discrepancies are relatively small, and are smaller 
for the Simple model than for the Complex one, which is 

unexpected. The discrepancies, however, may be explained: 
LCSR’s spray strips separate the flow, and hence reduce the 
high speed resistance of deep-V hulls, whereas the math model 
does not include the effects of bottom spray strips. 

For TUNS model No. 3018 (L/B = 3 and β = 18, Figure 3) 
two loading cases were evaluated, both for L/V1/3 = 5.146, but 
for LCG/L = 0.329 and 0.274, Figs. 39 and 40 respectively. 
The same figures also show the evaluated values for R/∆ (for 
model size of LOA = 0.69 m and Δ = 1.825 kg). Note that the 
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simple math model gave the same results for both positions of 
LCG, as is f(L/V1/3) only. The Complex model, however, clearly 
depicts the resistance hump (Figure 40) due to LCG position 
closer to the transom, which is not the case with the Simple 

model. This also shows the advantage of the Complex math 
model compared to the Simple one (which is supposed to give 
relatively good results only if the input parameters are within 
the average values). Obviously, these two math models are not 
always equally representative with the experimental data.

Both mathematical models were examined for several test 
cases of models belonging to the systematic series and having 
arbitrary planing hull forms. Verification raised new questions 
and doubts regarding the quality of the benchmarks. Namely, 
test cases are often unreliable as are based on small models, 
see for instance Moore and Hawkins 1969 and Tanaka et al 
1991. This subject is beyond the scope of this paper but merits 
future research.

CONCLUDING REMARKS

For evaluation of calm-water resistance (R/∆ for standard 
displacement of ∆ = 100000 lb) two speed dependent 
mathematical models, Simple and Complex, were derived. 
Mathematical models for evaluation of the wetted area (S/V2/3) 
and the length of wetted area (LK/L) were also derived (since 
they are needed for resistance evaluations when ∆ ≠ 100000 
lb). In addition to the volume Froude number (FnV), it is the 
slenderness ratio which is only used as the independent variable 
in the Simple model. In the Complex model, the slenderness 
ratio (L/V1.3), the length to beam ratio (L/B), the longitudinal 
centre of gravity (LCG/L) and the deadrise angle (β) are 
used. The Complex mathematical model is hence sensitive 
to variations of all mentioned independent variables. This is 
obviously not the case with the Simple model. 

The Simple model can be used in the concept design phases, 
when it is practical and desirable to know the relationship 
between vessel’s length and weight, since other hull form 
parameters are usually unknown. The Complex model can 
be (and should be) used with other available planing-hull 
resistance evaluation models, such as for example, Radojcic 
(1985), Keuning et al (1993) and Savitsky (1964, 2006 and 
2012). The proposed model covers hump speeds corresponding 
to FnV = 0.6 to 3.5. For higher planing speeds (of above FnV ≈ 3) 
the Savitsky model is recommended, unless the curved bow 
shape becomes wetted at low dynamic trim angles. 

The derived math models are based on the well known USCG 
series, and almost unknown prismatic hull form of TUNS Series, 
both with wide transom which match the contemporary planing 
hull forms. Keuning (1993) and Radojcic (1985) resistance 
predictions are based on narrow transom Series 62 (having β = 
12.5 to 30 degrees), and wide transom Series 65-B and narrow 
transom Series 62 (β = 12.5 to 25 degrees), respectively. The 
here derived Complex model may be incorporated in other 
power evaluation routines (numerical towing tank performance 
predictions) or optimization routines with the aim of obtaining 
the best dimensions, as for example given in Radojcic (1991). It 
should be noted that tank testing is rarely used in design of small 
craft due to the cost of tests relative to the cost of the vessel, 
hence various numerical towing tank performance predictions 
are used for all design phases.

Furthermore, it seems that the regression analysis is 
more convenient than artificial neural network (ANN) for 
simpler relations/equations. For complex relations with many 
polynomial terms, the regression analysis requires more time 
and higher levels of skill which is not so pronounced with 
ANN. Moreover, the step-by-step procedure and regression 
analysis allow screening of less significant polynomial terms 
(resulting with smaller polynomial equation) which is not the 
case with ANN where the number of terms is defined at the 
very beginning. 

Fig. 38. Discrepancies between evaluated and tested R/Δ data of TMB 
Model No. 4876

Fig. 37. Body plan of deep-V 52 ft LCSR (TMB Model No. 4876)

Fig. 39. Discrepancies between evaluated and tested R/Δ 
data of TUNS model No. 3018

Fig. 40. Discrepancies between evaluated and tested R/Δ 
data of TUNS model No. 3018
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The most significant disadvantage of the derived math 
models is that, in addition to the USCG Series, they are based 
on the TUNS Series – which is based on relatively small models 
– hence for some cases the database used is not reliable. It is 
believed, however, that both math models have smoothed out 
the inconsistencies and erroneous measurements. So, in some 
cases mathematical models might be more reliable than the 
original data. 

Whereas some interesting behaviours were observed when 
checking the quality of the mathematical model and comparing 
the evaluated values with the model test data of arbitrary hull 
forms, it was decided to leave that analysis for future work. 
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APPENDIX 1 – Simple Mathematical Model
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APPENDIX 2 – Complex Mathematical Model

Boundaries of applicability suitable for programming

No. No.

1 0.27 ≤ LCG/L < 0.33 L/V1/3 ≥ -6.66667 · LCG/L+ 6.1 10 0.39 ≤ LCG/L ≤ 0.41 L/B ≥ 45 · LCG/L - 15.05

2 0.39 ≤ LCG/L ≤ 0.41 L/V1/3 ≥ 65 · LCG/L- 21.45 11 0.27 ≤ LCG/L < 0.36 L/B≤ 3.5

3 0.27 ≤ LCG/L < 0.33 L/V1/3 ≤ 6.66667 · LCG/L+ 4.7 12 3.5 < L/B ≤ 4.7 LCG/L ≥ 0.36

4 0.39 ≤ LCG/L ≤ 0.41 L/V1/3 ≤ -35 · LCG/L+ 20.55 13 0.35 ≤ LCG/L ≤ 0.41 β ≥ 100 · LCG/L - 23

5 2.5 ≤ L/B < 4.0 L/V1/3 ≥ 0.866667 · L/B+ 1.73333 14 0.39 ≤ LCG/L ≤ 0.41 β ≤ -150 · LCG/L + 82.5

6 4.0 ≤ L/B ≤ 4.7 L/V1/3 ≥ 5.2 15 12° ≤ β ≤ 14° L/B≤ 3.5

7 2.5 ≤ L/B ≤ 3.5 L/V1/3 ≤ 1.3 · L/B+ 2.35 16 14° < β ≤ 18° L/B≤ 0.3 · β - 0.7

8 3.5 < L/B ≤ 4.7 L/V1/3 ≤ -0.583333 · L/B+ 8.94167 17 21° ≤ β ≤ 24° L/B≤ -0.4 · β + 13.1

9 0.27 ≤ LCG/L ≤ 0.35 L/B ≥ -5 · LCG/L + 4.25

Resistance to weight ratio – R/∆

where:
XK = {L/B, L/V1/3, FnV, LCG/L, β}
Y = R/∆ 
G, H, Pk, Rk, Akj, Bji, Ciw, Dwv, aj, bi, cw, dv are polynomial coefficients that follow:

J A1j A2j A3j A4j A5j aj

1 1.7456920 2.7293300 8.8455260 5.4907050 -9.3073300 -9.8579260
2 0.2898082 -3.1160330 20.4518000 -0.8953395 0.0587176 -2.3150330
3 -0.7191356 -3.2455800 2.2043970 1.0204330 1.1992110 -2.7231650
4 0.5621026 2.9209610 8.5967350 1.6920190 0.3731644 -3.5395460
5 -7.5173060 -1.3333580 -0.0657259 -1.0204240 -0.3872136 2.1804750
6 -6.2340650 4.1786120 8.8794550 2.3562540 2.3852490 -7.7696170
7 0.3437763 0.9243057 23.8714800 0.3581851 0.1575263 -2.5768110

I B1i B2i B3i B4i B5i B6i B7i bi

1 -2.4406510 2.1080950 7.6929170 -6.1960370 -5.0275680 3.0244980 10.1942600 -7.8806800
2 -3.0829330 1.8681110 3.5004800 -12.5751600 -1.8650630 3.8124340 13.9847500 -5.2925420
3 0.0122627 -4.3228210 0.4912690 -15.3144400 0.6553449 13.0049100 10.0027600 -4.6389580
4 1.3330090 9.3863860 -2.6382690 -3.5427440 -24.9670200 -0.3168464 1.4468000 -7.8299870
5 1.0186670 -0.2119331 0.1647189 -4.2780550 0.3412170 0.4457378 7.2457090 -4.3010290

W C1w C2w C3w C4w C5w cw

1 -7.0169640 1.0933530 -5.2393960 0.4377735 -5.5052590 -0.3100626
2 -3.2096000 -3.6988810 -11.5074100 -6.9135450 -6.0141480 11.2548400
3 2.9190180 -9.8329010 0.7894529 -17.4901300 6.3501410 5.8545430

V D1v D2v D3v dv

1 -6.9155950 -9.0677310 -0.9125847 10.0196700

L/B L/V1/3 FnV LCG/L β
Pk 0.4334425 0.3021148 0.1665957 6.5312046 0.0750000
Rk -1.0323493 -1.1270393 -0.0434102 -1.7402032 -0.8500000
H 3.1461161
G 0.0266244
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Wetted area coefficient – S/V2/3 

where:
XK = {L/B, FnV, L/V1/3, LCG/L}
Y = R/∇2/3 
G, H, Pk, Rk, Akj, Bji, aj, bi are polynomial coefficients that follow:

j A1j A2j A3j A4j aj

1 -1.0502660 4.8476660 -1.5388710 -1.5804480 -0.4047123
2 2.0970270 -1.0619980 -3.1135780 -0.3070406 1.6046860

i B1i B2i bi

1 -2.7913260 -3.2475410 2.4859060

L/B FnV L/V1/3 LCG/L
Pk 0.4157620 0.2589555 0.3021148 6.9230769
Rk -0.9881993 -0.0951964 -1.1270393 -1.8476154
H 0.1007964
G -0.2070596

Length of wetted area – LK/L
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