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Elements of Dynamic Parameters 
Modification and Sensitivity 
 
Structural modifications can cause changes in the matrices of some 
elements. Depending on the type of structure, or a desired change, a group 
of elements can be modified. This paper analyzes the effects of small and 
large-scale modifications of some groups of elements on structural 
eigenvalues and frequencies. The process of analysis is done using a 
computer program, based on using of finite element methods and the 
implementation of structure energy distributions. 
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1. INTRODUCTION  
 
Specific computations allow for a more profound 
knowledge of the structure’s behaviour [1]. The 
elements of modification (distribution of membrane and 
bending stresses [2], deformation energy and kinetic and 
potential energy per structural component) contribute to 
very efficient identification of the structure’s behaviour. 
They define the modifications that have to be performed 
on the structure in order to improve its behaviour during 
service life. The modification problem, in terms of 
mathematical form, implies minimizing the structure’s 
function (weight, deformation energy, stress level, 
eigenvalues) as a function of id parameters of 
modification νj (coordinates of the points, cross-
sectional area, thickness) with constraints g(νj) 
(constraints of stress values, displacements, length, 
surface, volume, frequency). In a general case, the 
functions considered are nonlinearly implicit. The basis 
for optimization is represented by the analysis of 
structural function sensitivity [4-6]. 
 
2. KINETIC AND POTENTIAL ENERGY 
 

In conservative systems the total mechanical energy 
is constant and differential equations of motion can be 
set applying the principle of the conservation of energy 
[3]. The energy of a mechanical system is divided into 
potential and kinetic energy. Kinetic energy Ek is 
contained in the mass by means of its velocity and 
potential energy Ep is contained in the form of stress 
energy of the deformation work done. The total energy 
for free undamped oscillations remains constant, its 
velocity of change equals zero, which is illustrated by 
the equations as follows: 

 k pE E const  ,   0k p
d

E E
dt

    

If eigenvalues of the system are the only subject of 
interest to consider, from the principle of the 
conservation of energy, the following relation can be 
written: 

 1 1 2 2k p k pE E E E     

here indices 1 and 2 represent two instants of time. 
Let 1 be an instant of time when mass passes through 
the position of static equilibrium, where Ep1=0 
(potential energy referential level) can be chosen to 
hold. Also, let 2 be the time with a corresponding 
largest displacement of mass. In this position, the mass 
velocity equals zero, therefore Ek2=0. It can be then 
written that: 

 1 20 0k pE E   .  

However, if the system is subject to harmonic 
motion, then Ek1 and Ep2 are maximum values and there 
holds: 

 
,max ,maxk pE E   

The above described procedure can be used as an 
introduction to essential understanding of dynamic 
modification methodology developed in this paper. 
 
2.1 Distribution of potential and kinetic energy on 

the main forms of oscillation 
 
The matrix form of differential equations of motion of a 
mechanical system represented by the finite element 
model for the case when there are no external forces 
acting is as follows: 

      [ ] [ ] 0M Q t K Q t
   

    
    
  (1) 

Where [K] and [M] are the matrices of stiffness and 
masses, respectively 

The eigensolution of the above differential equation 
for the i-th mode is: 

     [ ] [ ] 0ii i
K Q M Q   (2) 
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where λi is the i-th eigenvalue, and  iQ  is the i-th 

eigenvector of the structure. 
If the above equation is multiplied on the left side by 

the transposed value of the i-th eigenvector and is 
divided by 2, one obtains the potential and kinetic 
energy balance equation for the structure on the main 
forms of oscillation: 

        1 1
[ ] [ ]

2 2

T T

ii i i i
Q K Q Q M Q  (3) 

So, potential energy for the structure on the r-th 
main form of oscillation, considering the above 
equation, can be written in the form: 

    ,
1

[ ]
2

T

p r r r
E Q K Q  (4) 

whereas, in that case, kinetic energy is: 

    ,
1

[ ]
2

T

k r r r r
E Q M Q  (5) 

Considering Eq. (3) as well as an extract presented 
above from the theory, there follows the principle of the 
conservation of total energy on the main forms of 
oscillation: 

 , ,p r k r rE E E   (6) 

If the structure is discretized to N finite elements, 
then kinetic and potential energy of the entire structure 
can be represented as an algebraic sum of energies of all 
elements as follows. Let be 

  es
rq  - the corresponding r-th eigenvector of the e-

th element with s degrees of freedom, 

        ,

1

2


Ts s
p r r ree e e

e q k q  - the potential energy 

of the e-th element on the r-th main form of oscillation, 

        2
,

1

2


Ts s
k r r r ree e e

e q m q  - the kinetic energy 

of the e-th element on the r-th main form of oscillation, 
then the structural total kinetic energy on the r-th main 
form of oscillation can be represented by the sum: 

        2
, ,

1 1

1

2

N N Ts s
k r k r r r ree e ee e

E e q m q
 

    (7) 

Analogously, the structure’s potential energy on the 
r-th main form of oscillation can be also represented by 
the sum: 

        , ,
1 1

1

2

N N Ts s
p r p r r ree e ee e

E e q k q
 

    (8) 

If structural N finite elements are divided into P 
characteristic subgroups (subgroups can be formed 
according to the type of finite elements lines, surfaces, 
volumes), or according to unit groups in complex 
machine systems, then the total kinetic energy and the 
total potential energy can be represented as a sum per 
subgroup: 

    , , , ,
1 1

,
P P

p r p r k r k r ll
l l

E E E E
 

    (9) 

Where (Ek,r)l and (Ep,r)l are kinetic and potential energy 
of the l-th subgroup of elements, respectively. The 
distribution of kinetic and potential energy per structural 
subgroup on the r-th main form of oscillation can be 
expressed in per cent, respectively: 

  
 

 ,
,

,
% 100 %

k r l
k r

k r

E

E
   ,  

  
 

 
,

,
,

% 100 %
p r l

p r
p r

E

E
    (10) 

So, based on the distribution of kinetic and potential 
energy expressed in per cent, a group of elements 
suitable for dynamic analysis can be roughly selected, to 
be discussed in detail below. And before that, a simple 
example will demonstrate how to calculate kinetic and 
potential energy per element, for the first three forms of 
oscillation. 
 
2.2 Structural modifications 
 
Structural modification can cause changes in the 
matrices of some elements. Depending on the type of 
structure, or desired changes, one element or a group of 
elements can be modified. 

If more than one group of elements is modified, then 
the ‘perturbed’ matrix of the system stiffness equals: 

        
1 1

,
L L

system e system e
e e

K k M m
 

        (11) 

where L is the number of modified elements. 
Furthermore, each growth matrix for individual 
elements can be represented as the function of matrices 
of the original system via the coefficient of modification 
(or as a sum of terms especially referring to bending, 
axial strain or torsion, if it is needed): 

        ,e ee e e e
k k m m        (12) 

These relations can be linear or nonlinear. For 
example, the effect of plate thickness on axial stiffness 
is linear, while the effect on bending stiffness is of the 
third order. These relations for mass modification are 
commonly linear. If necessary, the range of structural 
modifications can be sometimes also expressed by 
corresponding inequalities. 

Example of the analysis of energies distribution for a 
simple structure composed of three articulated 
connecting rods 

 
Figure 1. 
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Table 1. 

First form  Second form  Third form  
Ep [J] Ek [J] Ep [J] Ek [J] Ep [J] Ek [J] 

Rod 
I  

0.2982 0.1254 0 0 0.0935 0.4378 

Rod 
II  

0.0265 0.1992 0 0 1.0507 0.7062 

Rod 
III  

0 0 0.5123 0.5123 0 0 

All terms for energy are multiplied by factor EA/L . The 
dimension for energy is [J]. Numbers in the table have 
the dimension [m2] 
 

Figure 1. 
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Figure 2. Distribution of kinetic and potential energy per 
lattice rod on the 1st form of oscillation, in per cent. 
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Figure 3. Distribution of kinetic and potential energy per 
lattice rod on the 2nd form of oscillation, in per cent. 
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Figure 4. Distribution of kinetic and potential energy per 
lattice rod on the 3rd form of oscillation, in per cent. 

2.3 Modified first-order equations for the system 
 
If [ΔK] and [ΔM] are corresponding changes in the 
matrices of stiffness and masses, respectively, then the 
expression (2) can be also applied to a modified system, 
and so-called modified ( In the literature, the term 
‘perturbation equation’ is frequently used.) equation for 
the case of free oscillations 

reads    [ ]' ' '[ ] ' 'ii i
K Q M Q , where it holds:  

      
[ ] [ ]' [ ], [ ] [ ]' [ ],

' , 'i i ii i i

K K K M M M

Q Q Q   

     

     
  

and where i  and  
i

Q  are changes of eigenvalues 

and eigenvectors, respectively. Now, the equation of an 

original, unmodified system    [ ] [ ] ii i
K Q M Q  can 

be written as follows:  

 
      
       
[ ]' [ ] '

' [ ]' [ ] '

i i

i i i i

K K Q Q

M M Q Q 

    

     
 (13) 

The above equation is the third-order equation for its 
‘modified’ terms, and if the potential and kinetic energy 
balance equation for the structure [3] is written in a 
‘perturbed’ form, the fourth-degree equation is 
obtained: 

 

           
      
      

[ ] [ ]

[ ] [ ]

T

i i i i

T

i i i i

i i

Q Q K K Q Q

Q Q

M M Q Q

 

      

    

    

 (14) 

The above equations indicate that there are two 
approaches. First, these equations can be used to obtain 
modification of frequencies and modal forms as a result 
of modifications in the system stiffness and mass. This 
approach is referred to as ‘advanced modification’. 
Second, these equations can be used for the inverse 
case, how to determine modifications in the system 
stiffness and mass when there are desired modifications 
of frequencies and modal forms. The approach is called 
‘inverse modification’. Assuming that structural 
modifications are small, it can be expected that 
modifications of the vectors of eigenvalues and 
eigenvectors will be also small. So, the higher-order 
terms in the following expression can be neglected [4] 
(Note that the ‘order’, as above used, refers to modified 
quantities and does not represent the terms of the 
modification parameters order. For example, [ΔK] can 
be of the third order when plate thickness is 
modification parameter, while [ΔM] for that case is of 
the first order. So, it is not quite clear when higher-order 
terms can be ‘painlessly’ neglected compared to first-
order terms.): 

       [ ]' [ ] '
i i

K K Q Q       
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        ' [ ]' [ ] 'i i i i
M M Q Q         

       [ ]' ' [ ]' [ ] ' [ ]
i i i i

K Q K Q K Q K Q          

 
   
   

'[ ] ' ' '[ ] '

'[ ] ' '[ ] ' ' ...

i ii i

i ii i

M Q M Q

M Q M Q

 

 

  

    
 (14a) 

Considering that equations 

       [ ]' ' '[ ] ' ', [ ] ' '[ ] 'i ii i i i
K Q M Q K Q M Q      

hold, when only first-order terms are retained, Eq (14) 
becomes a modified first-order equation: 

      [ ] ' '[ ] ' [ ] ' 'i ii i i
K Q M Q M Q       (15) 

If the above equation is multiplied on the left side by 
one half of the transposed value of the i-th eigenvector, 
there follows the expression: 

 
       

   

1 1
' [ ] ' ' ' [ ] '

2 2
1

' [ ]' '
2

T T
ii i i i

T
i i i

Q K Q Q M Q

Q M Q





   

 
  

wherefrom a change of the i-th eigenvalue can be 
expressed for the system modification, which is the goal 
of this procedure: 

 
       

   

1 1
' [ ] ' ' ' [ ] '

2 2
1' ' ' [ ]' '
2

T T
ii i i ii

Ti
i i i

Q K Q Q M Q

Q M Q


 

  
 (16) 

The above expression can be considered a basic 
expression for structural reanalysis to improve dynamic 
characteristics. The expression in the numerator 
represents the difference in potential energy growth and 
kinetic energy growth between modified and 
unmodified states. Since the i-th eigenvalue growth is 
directly proportional to that difference, each term in the 
nominator is of vital interest for the analysis to be done 
in detail in considerations below. Another important 
question is raised with reference to the above 
expression. Namely, the notation “, ‘, “ is used to denote 
the corresponding quantities related to the modified 
state. Frequently, in the modification process, due to the 
bulky nature of some problem it is impossible to readily 
arrive at those quantities. If modifications are small, 
which is a condition for the accuracy of derived 
expressions, the expression with quantities figuring in 
the unmodified system can be used quite reliably. 

 
       

   

1 1
[ ] [ ]

2 2
1

[ ]
2

T T

i

i i i i

i

T

i

i

i i

Q K Q Q M Q

Q M Q


 

  
  (17) 

If the r-th form of oscillation is observed, the 
growths of potential and kinetic energy are determined 
by the expressions: 

    ,
1

' [ ] '
2

T
p r r r

E Q K Q      

        
   

1 1
' [ ] ' ' ' [ ] '

2 2
1

[ ]
2

T T
r r r r

T

r r

Q K Q Q K Q

Q K Q

 

 

,  

    ,
1

' ' [ ] '
2

T
k r r r r

E Q M Q      

       1 1
' ' [ ]' ' ' ' [ ] '

2 2
T T

r rr r r r
Q M Q Q M Q     

    1
[ ]

2

T

r r r
Q M Q    

The expression in the nominator of Eq (17) is kinetic 
energy on some form of oscillation, and considering the 
expression (3), it simultaneously represents potential 
energy due to energy balance on the main forms of 
oscillation 

    ,
1

[ ] ,
2

T

p r r r
E Q K Q   

    , , ,
1

[ ] ,  
2

T

k r r p r k r rr r
E Q M Q E E E    (18) 

If modification is performed on the e-th finite 
element, the matrices of masses and stiffness of that 
finite element become: 

 
         

         

'

'

,

,

еe e e e e

еe e e e e

k k k k k

m m m m m





    

    
 (19) 

where αe and βe are the quantities defining the 
modification of the e-th element and are called the 
coefficients of modification. For that case, in the 
matrices of growth of stiffness and masses matrices all 
terms equal zero, except for those corresponding to the 
e-th finite element, so that the nominator of Eq. (17) for 
the r-th form of oscillation becomes: 

          1 1

2 2

T T

rr r r r
Q K Q Q M Q      

           1 1

2 2

T Ts s s s
e r r e r r re ee e e e

q k q q m q      

  , ,
1

2 e p r e k re e   (20) 

where: 

 sr e
q  - a corresponding r-th eigenvector of the e-th 

element with s degrees of freedom, 

     ,

1

2


Ts s
p r r ree e

e q k q  - potential energy of the e-th 

element on the r-th main form of oscillation without 
structural modification, 

     2
,

1

2


Ts s
k r r r ree e

e q m q  - kinetic energy of the e-th 

element on the r-th main form of oscillation without 
structural modification. 
After the analysis, the expression (17) can be written as 
follows: 
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       
   

, ,

,

1 1
[ ] [ ]

2 2
1

[ ]
2

T T

ii i i ii
T

i
i i i

e p r e k r

k r

Q K Q Q M Q

Q M Q

e e

E


 

 

  
 




 (21) 

The expression (20) indicates impact of some finite 
elements on the eigenvalue growth. If the distribution of 
energies per group of elements is expressed in per cent 
on each main form of oscillation, the information items 
needed for modification can be roughly obtained. The 
basic goal of dynamic modification is to increase 
eigenvalues and their mutual intervals. 

 
2.3 Characteristics of modifications. Coefficients of 

modification 
 

As above mentioned, and well-known, eigenvalue is 
equal to the square of the frequency (λ = ω2). Therefore, 
it can be claimed that eigenvalue is a ‘simpler’ variable 
than frequency. Modified eigenvalue can be expressed 
as follows: 

    2 22 2                  (22) 

So, 

  22         (23) 

If relative modification relations are incorporated in 
the following way ,

 
 

  
 

 the above equation 

can be written in the form: 

 2 2 2 22 2                   

and for small modifications of frequencies there holds 
the approximate linearized form: 

 2     

For example, if the increase of frequency is 10%, the 
following calculations hold: 

 2

' 1.1 0.1
2 0.2

' ' 1.21 0.21
priblizno

    
 

     

       
      

 

However, if the increase of frequency is 30%, then it 
holds: 

 2

' 1.3 0.3
2 0.6

' ' 1.69 0.69
priblizno

    
 

     

       
      

 

This difference between linearized and accurate 
values can cause troubles, and because of that nonlinear 
forms must be retained for larger modifications of 
frequency. 

Some characteristic examples are used below to 
demonstrate the derivation of the coefficients of 
modification. The leading spindle, a line carrier, can be 
discretized in the shape of KE-beam with a ring cross-
section, outside diameter D  and inside diameter d . If 
structural modification is performed via diameter 
modification, then relative modification relations are 
given as follows: 

 ,  
D d

D d
  

   (24) 

The matrices of stiffness and masses for finite 
element in the beam shape, as above mentioned, look 
like this: 
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
.  

Where 2 z
A

I y dA  is axial moment of inertia of the 

cross-sectional area around the z-axis. For the case of a 
beam with a ring cross-section, and the ring cross—

sectional area 
22

1
4

     
   

D d
A

D


. 

So, the matrix of stiffness is the fourth-order 
function of the cross-sectional diameter, and the matrix 
of masses is the second-order function of the cross-
sectional diameter, therefore, after applying the 
expression (19) the corresponding coefficients of 
modification for the case ψ = ξ are: 

    4 2
1 1, 1 1e e           

For the case of a beam element with a rectangular 
cross-section, whose dimensions are b h , axial 

moment of inertia for one of the main axes is 
3

12
z

b h
I . 

If structural modification is performed via modification 
of dimensions b and/or h, then relative modification 

relations are 



b

b
  and 




h

h
  and corresponding 

coefficients of modification e  and e , for this case 

would be: 

       3
1 1 1, 1 1 1e e               

Table 2. 

I profile 
h 

[cm] 
A 

 [cm2] Ai/A1 
Iy 

[cm4] 
Iyi/ Iy1 

Ix 
[cm4] 

Ixi/ Ix1 

8.0 
10.0 
12.0 
16 
18 
20 
22 
24 
26 
28 
30 

7.58 
10.6 
14.2 
22.8 
27.9 
33.5 
39.6 
46.1 
53.4 
61.1 
69.1 

1.00 
1.40 
1.87 
3.01 
3.68 
4.42 
5.22 
6.08 
7.04 
8.06 
9.12 

6.3 
12.2 
21.5 
54.7 
81.3 
117 
162 
221 
288 
364 
451 

1.00 
1.94 
3.41 
8.68 
12.90 
18.57 
25.71 
35.08 
45.71 
57.78 
71.59 

77.8 
171 
328 
935 

1450 
2140 
3060 
4250 
5740 
7590 
9800 

1.00 
2.20 
4.22 

12.02 
18.64 
27.51 
39.33 
54.63 
73.78 
97.56 
125.96 
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In Tables 2-5, relative modification relations are 
indirectly represented by the axial moments of inertia - 
cross-sectional areas ratio for some characteristic 
profiles, as indicated by corresponding diagrams. 

Table 3. 

U profile 
h 

[cm] 
A 

[cm2] 
Ai/A1 

Iy 
[cm4] 

Ixi/ Ix1 
Ix 

[cm4] 
Ixi/ Ix1 

6.5 
8.0 
10.0 
12.0 
14 
16 
18 
20 
22 
24 
26 
28 
30 

9.03 
11 

13.5 
17 

20.4 
24 
28 
32 

37.4 
42.3 
48.3 
53.3 
58.8 

1.00 
1.22 
1.50 
1.88 
2.26 
2.66 
3.10 
3.54 
4.14 
4.68 
5.35 
5.90 
6.51 

14.1 
19.4 
29.3 
43.2 
62.7 
85.3 
114 
148 
197 
248 
317 
399 
495 

1.00 
1.38 
2.08 
3.06 
4.45 
6.05 
8.09 

10.50 
13.97 
17.59 
22.48 
28.30 
35.11 

57.5 
106 
206 
364 
605 
925 
1350 
1910 
2690 
3600 
4820 
6280 
8030 

1.00 
1.84 
3.58 
6.33 

10.52 
16.09 
23.48 
33.22 
46.78 
62.61 
83.83 
109.22 
139.65 

Table 4. 

Boxy cross-section, thickness δ = 2 mm 
a,b 

[cm] 
A 

[cm2] 
Ai/A1 Iy 

[cm4] 
Ixi/ Ix1 Ix 

[cm4] 
Ixi/ Ix1 

 
18 
20 
22 
25 
30 
35 
40 
50 
60 

 
1.177 
1.337 
1.497 
1.737 
2.137 
2.537 
2.937 
3.737 
4.537 

 
1.0000 
1.1359 
1.2719 
1.4758 
1.8156 
2.1555 
2.4953 
3.1750 
3.8547 

 
0.404 
0.603 
0.857 
1.357 
2.558 
4.306 
6.701 
13.833 
24.754 

 
1.0000 
1.4926 
2.1213 
3.3589 
6.3317 
10.6584 
16.5866 
34.2401 
61.2723 

 
0.404 
0.603 
0.857 
1.357 
2.558 
4.306 
6.701 
13.833 
24.754 

 
1.0000 
1.4926 
2.1213 
3.3589 
6.3317 
10.6584 
16.5866 
34.2401 
61.2723 

Table 5. 

Boxy cross-section, thickness δ = 3 mm 
a,b 

[cm] 
A 

[cm2] 
Ai/A1 Iy 

[cm4] 
Ixi/ Ix1 Ix 

[cm4] 
Ixi/ Ix1 

 
40 
50 
60 
70 
80 
90 
100 
110 
130 

 
4.208 
5.408 
6.608 
7.808 
9.008 
10.208 
11.408 
12.608 
15.008 

 
1.0000 
1.2852 
1.5703 
1.8555 
2.1407 
2.4259 
2.7110 
2.9962 
3.5665 

 
8.618 

18.510 
33.925 
56.065 
86.129 
125.317 
174.829 
235.865 
397.310 

 
1.0000 
2.1478 
3.9365 
6.5056 
9.9941 
14.5413 
20.2865 
27.3689 
46.1023 

 
8.618 

18.510 
33.925 
56.065 
86.129 
125.317 
174.829 
235.865 
397.310 

 
1.0000 
2.1478 
3.9365 
6.5056 
9.9941 
14.5413 
20.2865 
27.3689 
46.1023 

 
Figure 5. I profile. 

 
Figure 6. U profile. 

 
Figure 7. Profile of boxy cross-section, thickness δ=2mm. 

 
Figure 8. Profile of boxy cross-section, thickness δ=3mm. 

 
3. CONCLUSION 
 

The above diagrams allow for the following 
conclusions. Red line denotes relative relations between 
axial moments of inertia for one of the main central axes 
of the corresponding cross-section for an arbitrary 
cross-section and the corresponding referential one. 
Green line denotes those relations for another axis. 
Considering that beam bending stiffness is proportional 
to a corresponding axial moment of inertia, proper 
choice of the profile type can considerably increase 
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structural eigenfrequencies as early as in the stage of the 
original structure design. Namely, it is noticeable that U 
profile is more acceptable for one direction, while I 
profile is better for another direction. Boxy profiles are 
more acceptable because they have the same properties 
for both directions. This procedure can be applied to 
more complex structures. Establishing the most 
sensitive locations and making corresponding 
modifications of a set of elements, dynamic behavior of 
the entire structure can be improved. 
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ЕЛЕМЕНТИ МОДИФИКАЦИЈЕ И 
ОСЕТЉИВОСТИ ДИНАМИЧКИХ 

ПАРАМЕТАРА 
 

Наташа Тришовић, Ташко Манески, Зорана 
Голубовић, Стефан Сегла 

 
Промене на конструкцијама могу изазвати промене 
у структурним матрицама неких елемената. У 
зависности од врсте конструкције, као и од жељених 
промена у њој, могуће је мењати већу или мању 
групу елемената. У овом раду се анализирају ефекти 
малих и великих модификација група елемената на 
сопствене вредности и фреквенције. Анализа се 
врши коришћењем компјутерских програма 
заснованим на методи коначних елемената и 
имплементацији дистрибуције потенцијалне и 
кинетичке енергије на главним облицима 
осциловања у посматраним елементима 
конструкције.  

 


