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Considerations of Various Moving 
Load Models in Structural Dynamics of 
Large Gantry Cranes 
 
The paper deals with the moving load problems within the structural 
dynamic analysis of a large gantry crane as high-performance machine. 
The emphasis is placed on combined method approach, i.e. finite element 
method and analytical postulations, to obtain the mathematical model of 
crane. Moving trolley is considered throughout several models: moving 
force, moving mass, moving oscillator and moving oscillator with swinging 
object. Each model has characteristics which determine the responses of 
the crane structure, along with its dynamic properties. The title problem is 
solved by calculating the forced vibration responses of the two-
dimensional framework with time-dependent property matrices and 
subjected to an equivalent moving load. Improving the moving load models 
increases complexity as well for postulating as for obtaining the solutions 
from overall crane model. Comparative presentation of models is shown 
here with conclusion that leads to an appropriate way of model selection 
prior to crane problem postulation. 
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1. INTRODUCTION 
 

The moving load problem is a very important topic in 
structural dynamics. In the beginning, it was related 
with the design of railway bridges and highway 
structures which showed additional vibration effect 
from the vehicle movement. This problem triggered the 
research into the moving load problem, initially with 
Stokes and Timoshenko. Many papers are presented in 
an excellent monograph by Fryba [1], which describes 
the basic postulation of moving load problems and their 
analytical solutions. 

Irrespective of many viewpoints, moving load 
problem methodology has two sides: analytical 
approach and finite element approach. Analytical 
approach is limited to simple cases of structures (such 
as simple beams) and basic types of loads. Closed-form 
solution for the governing equations is hard to find, 
even for the simple cases, and involves intensive 
mathematics. That is why finite element approach 
improved the studies in moving load problems with a 
wide range of complex structures and load models. 
However, it demands certain numerical integration 
schemes in the time-domain analysis which can be 
intensive computational process.  

Over the years, moving load problems have gained 
interest in the field of machines and mechanical 
structures due to the fact that working parameters are 
increasing. Typical structures under a moving load in 
mechanical engineering are bridge cranes, gantry 
cranes, unloading bridges, tower cranes, cableways, 
guideways, and container cranes. Here, the quayside 

container cranes (QCC) and rail mounted gantry 
container cranes (RMG) can be pointed out in moving 
load analysis because of the high speeds of trolleys, 
large lifting capacities and overall structural 
dimensions.  

This paper studies the dynamic responses of the 
RMG container crane subjected to various types of 
moving loads-models upon the structural design of 
trolleys. The inspiration is gained with the fact that 
container transport is increasing yearly average 8% and 
that up-to-date RMG cranes can have spans up to 50 m 
with trolley speeds of 3 m/s, which place it in high-
performance machine. Thus, mathematical models are 
needed for moving load analysis at cranes, particularly 
because it is very difficult and expensive in practice to 
do an experimental research on a real-size crane.  

 
2. MOVING LOAD MODELS 

 
The main distinction in moving load problems is 
modelling of the vehicle/trolley system. First and basic 
approach is a moving force model (MFM). Fundamental 
postulation is a model of structure as simple beam 
subjected to constant force (weight of vehicle-mss g) 
moving with constant speed v, [2]. The moving force 
model is easy to use and brings attention in 
contemporary studies as well [3].  

The moving mass model (MMM) includes inertial 
effects of the vehicle/trolley, and in fundamental 
postulation, for vertical displacements of the beam-
w(x,t), can be presented as: 

2 4 2

2 4 2

( , )
[ ] ( )ss ss

w w w vt t
A EI m g m x vt

t x t

  
     

  
 (1) 

which clearly indicates the structure-trolley interaction. 
Hence, the speed of moving mass, structure flexibility 
and the mass ratio of moving payload and structure are 
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important factors that contribute to creating the 
interaction force [4]. The interaction force is highly 
non-linear in nature in its local and convective 
derivatives and changes its position and magnitude with 
time, which is usually represented with Dirac delta 
function (δ), as given in Eq. (1). MMM arises with 
comlexity when variable speed of moving load is 
included [5]. However, even for the case when more 
accurate results are obtained with MMM [6], the 
consequences of neglecting this interaction may 
sometimes be minor even for the extreme up-to-date 
QCC [7].A moving oscillator model (MOM) assumes 
that payload is attached to a mass of moving vehicle 
through a spring. The fundamental analytical 
postulation is given in [8]. With high values of the 
spring stiffness the MOM can be reduces with MMM in 
most cases [9]. 

 
Figure 1. a) RMG container crane, b) Moving force (MFM), c) 
Moving mass (MMM), d) Moving oscillator (MOM), e) 
Moving pendulum (MPM), f) Moving oscillator with 
pendulum (MOPM). 

In structural dynamics of cranes, the very important 
moving load problem is the approach with a model of 
moving trolley hoisting a swinging object or moving 
pendulum problem (MPM). The literature dealing with 
this problem is scarce and only few researches can be 
found [10,11]. In some studies [12], it is used equivalent 
moving mass matrix which reduce the MPM to MMM. 
It is shown that influence of the swinging angle of the 
payload is big on horizontal responses of the structure. 

The upgrade of the MPM is the model of trolley 
with suspended hoist with swinging object which can be 
named as moving oscillator with pendulum (MOPM). 
Compared with previous models, this model is the most 
complex for gaining the governing equation and 
obtaining the solutions [13]. 

The goal of this paper is to present comparative 
overview of the various models usage at gantry crane 
dynamics and their characteristics that can lead to 
appropriate modelling. The combined method-finite 
element and analytical method is adopted to gain the 
mathematical models [14]. Prior to gantry crane 
dynamics, it can be concluded that every research has to 
include following: (i) Both the horizontal and the 
vertical responses of the structure, (ii) Real cycle of 
trolley movement with emphasis on 
acceleration/deceleration periods, (iii) Lowest level of 
approximation when trolley inertial effects included. 

 
3. MODEL FORMULATION 

 
The approach used here is a combined finite element 
and analytical method for obtaining transverse and 
longitudinal vibrations of a gantry crane system 
subjected to a moving load. The general approach in 
moving load problems at cranes is also used here, thus 
the system of the gantry crane (Figure 1.a) is divided 
into two parts: the framework (structure) and the 
moving system. The framework is a planar (2D) discrete 
model consisted of top beam with length L, pier leg with 
height H and sheer leg with height h. The discretization 
of the framework (Figure 2.a) is done by using FEM, 
with plane-frame elements, [15]. The top beam is 
divided in 10 identical elements and each leg by 2 
elements. Hence, framework has 41 DOF's (with 
extraction of the restrained displacements from 
supports) forming the structure displacement vector U. 

 
Figure 2: a) FE model of the gantry crane structure, b) 
Equivalent nodal forces of the elements s, c) Speed pattern 
of the moving load, d) Moving load models - MMM, MOM 
and MOPM, e) Contact point displacements. 
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The global position of the moving system on the top 
beam, Figure 2.a, is assumed to be known and defined 
by coordinate xm(t). Here, the acceleration/deceleration 
is also included in calculation because of the trolley 
trapezoidal speed pattern, Figure 2.c. It is assumed, by 
model of the gantry crane system, that a loading is 
symmetrically distributed on the top beam rail(s) and 
furthermore that relationship between the framework 
and the moving system can be simplified into one 
moving load P(t), with projections in two-dimensional 
directions Px(t) and Py(t), Figure 2.b.  

The moving system is considered as MMM, MOM 
and MOPM, Figure 2.d, while MFM is used as a special 
case of MMM when inertial effects from moving mass 
are neglected. The mass of the moving system consists 
of a mass of trolley (m1), hoist mass (m2) and payload 
mass (m3). According to the used model, additional 
DOF's are y-vertical displacement of oscillator and φ- 
swinging angle of the payload. It is assumed that trolley 
and structure are always in contact and that trolley is 
moving on the smooth surface on the top beam. 

 
4. EQUATION OF MOTION FOR THE SYSTEM 

 
The equation of motion for a multiple degree of 
freedom system is represented as follows: 

 ( )t  Mq Cq Kq F   (2) 

where M, C, K are the overall mass, damping and 
stiffness matrices of the system, respectively; 

, , q q q  are, respectively, acceleration, velocity and 

displacement vectors for the system and F(t) is the 
external force vector. Apart from the structural 
displacement vector U, the overall displacement vector 
includes the coordinates y and φ, which depends on the 
used load model. 

 
4.1 Structural stiffness, mass and damping matrix 

 
The equation of motion for a framework (structural 
system) is represented as follows: 

 ( )t  st st stM U C U K U P   (3) 

where Mst, Cst, Kst are the mass, damping and stiffness 

matrices of the structural system; U , U , U are the 
respective acceleration, velocity and displacement 
vectors for the structural system and P(t) is the external 
force vector acting upon the structure. 

According to the shown FE model of the framework, 
the stiffness matrix can be obtained by assembling all 
the element stiffness matrices [16] up to forming the 
square matrix Kst that corresponds with 41 DOF's of the 
structure. Similarly, the mass matrix of the framework 
Mst can be obtained. As usually practiced in FE 
dynamic analysis of MDOF system, the damping matrix 
is constructed by using the theory of Rayleigh damping 
in following form [17] 

   a b st st stC M K . (4)  

with constants a and b that correspond to first two 
frequencies and their damping ratios (ξ). 

4.2 Equivalent nodal forces and external load vector 
 
The structural external force vector P(t) takes the form 
[17] 

1 2 3 4 5 6( ) [0... ( )  ( )  ( )  ( )  ( )  ( )...0]s s s s s s Tt f t f t f t f t f t f tP  (5) 

where ( ),  1 6s
if t i   , are the equivalent nodal forces 

of the element s, determined by 

1 1( ) ( ) ( )s
xf t N x P t , 4 4( ) ( ) ( )s

xf t N x P t  

2 2( ) ( ) ( )s
yf t N x P t  , 3 3( ) ( ) ( )s

yf t N x P t   (6) 

5 5( ) ( ) ( )s
yf t N x P t  , 6 6( ) ( ) ( )s

yf t N x P t   

Noting that l is the element length and x is the 
distance along the element s to the point of the 
application of the forces (Figure 2.b), the relative 
distance is given by lx / , thus, the shape functions, 

Ni = Ni(x) = Ni(ξ) (i =1-6), take the following form 

1 1N   , 4N  , 
2 3

2 1 3 2N     , 2 3
3 ( 2 )N l      , 

 2 3
5 3 2N    , 2 3

6 ( )N l      (7) 

The trolley moves from left end of the beam, at time 
t = 0, to the right end with defined speed pattern and its 
position on the top beam at time t is known - xm(t). The 
element number s on which the moving forces are 
applied, at any time t (t  0), is 

 
( )

s [ ] 1mx t
IntegerPart

l
  . (8) 

The nodal forces can be calculated in terms of the 
global position, by 

 
( ) (s-1)mx t l

l



 . (9) 

According to the Eqs. (5,6) one may represent the 
element nodal force vector as  

 { ( )}s T T
x yf t P P x yN N . (10) 

where 

1 4[ 0 0 0 0]N NxN , 

 2 3 5 6[0 0 ]N N N NyN . (11) 

Adjustment with total DOF's give the following 
matrices 

[0 0 0]X xN N  , 

 [0 0 0]Y yN N   (12) 

These matrices are with non-zero elements which 
correspond to the DOF's of element s where the moving 
load is located at, while other elements are zero. The 
submatrices Nx and Ny are calculated by (9,8,7). One 
may see that these matrices engage only 6 values which 
move along in the (12), as moving load changes the 
position on the top beam. 

The axial displacement at any location within the 
finite element, wx= wx(x,t), and transversal displacement 
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at any location within the finite element wy= wy(x,t), 
Figure 2.e, can be presented in matrix form as 

 xw  XN U , yw  YN U . (13) 

Second derivates of the expression (13) can be 
presented [13], in following form 

xw  XN U  
'' 2 ' '  2  yw x x x   Y Y Y YN U N U N U N U      (14) 

where the superscripts ('), ('') are representing the first 
and second derivate of expressions (7) with respect to x, 
while x is the velocity and x is the acceleration of the 
moving system. The structural external force vector 
takes the matrix form 

 ( ) T T
x yt P P X YP N N . (15) 

which can be used, in combination with (3), for forced 
vibrations of the framework. 

The interaction forces between the structure and the 
moving load model are, in general,  

 , ,( , , , , )x y x y iP f w w m y     . (16) 

which is in detail presented in [13] for MMM, MOM, 
MOPM. The additional equations for oscillator and 
pendulum are obtained according to the Second 
Newton's law. Combination of these equations with Eqs. 
(3-16) up to the form of the Eq. (2) give the equation of 
motion for the used system.  

The general procedure is to divide the total time τ, 
needed for moving system to travel from the left end to 
the right end of the top beam, into p steps with a time 
interval Δt and to calculate all the given matrices for 
each time step r (r =1-p). 

 
5. NUMERICAL RESULTS AND DISCUSSION 

 
Dynamic behaviour of the gantry crane subjected to 
various moving loads is obtained by solution of the Eq. 
(1). Original in-house software is created to solve the 
title problem with direct integration method based on 
the Newmark algorithm [18]. The maximal time interval 
Δt is 0.005 s. The gravitational acceleration g is taken to 
be 9.81 m/s2. The crane structure is made of steel with 
density 7850 kg/m3 and modulus of elasticity 2.1 1011 
Pa. Initial model includes structural damping with 
ξ=ξ1=ξ2=0.5 %. 

Geometric characteristics of the gantry crane are 
L=40 m and H=h=15 m. Element properties are: 
An=0.09 m2, In=0.041 m4 (n=1-10), A11=0.085 m2, 
I11=0.036 m4, A12=0.07 m2, I12=0.024 m4 and An=0.048 
m2, In=0.01 m4 (n=13-14). The moving system consists 
of payload of 52 t, trolley of 3 t and hoist of 5 t, thus 
mss=60 t. Initial spring stiffness in moving system is 
k=109 N/m, while rope length is Lu=12 m. The system 
moves with 2 speed patterns, where pattern v1 assumes 
vr=3 m/s, au=ak=0.6 m/s2, which corresponds to 
characteristics of nowadays systems of trolleys, while 
the pattern v2 assumes vr=5 m/s, au=ak=1.25 m/s2 which 
is extreme assumption, but expected in the close future. 

First, the MMM model is analysed. As expected 
from physical intuition, the biggest values of vertical 
displacements are for node 6, i.e. the middle point. 
Horizontal displacements for all the top beam points are 
the same, because of high axial stiffness of the 
elements. Figure 4 shows the results for both the speed 
patterns. The responses are higher for pattern v2. This 
influence is very significant for horizontal displacement 
UX1 where values reach the maximum of 5.41 cm in the 
deceleration period, while maximum value with pattern 
v1 is 4.1 cm, Figure 3. The difference is much smaller 
for the vertical displacement of middle point, Figure 
4.b. Maximum values occur when trolley is at midspan, 
and for v1 is 5.2 cm and 5.4 cm for pattern v2. 
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Figure 3: a) Horizontal displacement UX1, b) Vertical 
displacement UY6; v1,v2. 

When inertial effects of the moving mass are 
neglected, MFM is analyzed and comparison of results 
show big difference in values for horizontal 
displacement, Figure 4.a. MFM simplifies the 
mathematical algorithm but when MMM is included 
one may calculate the frequencies of the whole system 
at each time step. The results for first 3 frequencies are 
shown at Figure 4.b. It is obvious that frequencies are 
dependent on position of mass moving on the top beam. 

The vertical and horizontal displacements of node 6, 
for MOM model with speed pattern v2, are presented in 
Figure 5.a. When compared with values from Figure 3, 
for speed pattern v2, one can find negligible difference 
because the spring stiffness of k=109 N/m is high 
enough to comply with moving mass model. 

Here, it is convenient to find the values of vertical 
displacement of the beam over the point of contact -wy. 
With decrease of stiffness to k=107 N/m, one may see 
slight change of displacement y in relation to wy, Figure 
5.b. Thus, up to these values there is no significant 
influence in dynamic responses of structure. 
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Figure 4: a) MMM/MFM Horizontal displacement Ux1, v2, b) 
MMM first 3 frequencies 
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Figure 5: MOM, a) Vertical and horizontal displacement-

node 6, b) Displacement y, k=107 N/m; v2. 

Finally, the MOPM model is used. One can find that 
increase of acceleration has high influence on the 
swinging angle of the payload, which should bring 
attention in design. The swinging angle reaches the 
value of 14.3o, Figure 6.a, in this case. Moreover, 
additional inertial effects due to swinging have 
influence on horizontal displacements of the structure, 

Figure 6.b, while vertical displacement are similar to the 
values with previously presented models. 
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Figure 6. MOPM: a) Swinging angle φ, b) Horizontal 
displacement-node 6; v1,v2. 

 
6. CONCLUSION 

 
The results from Figure 4.a show that MFM is less 
accurate than MMM, considering horizontal 
displacements of the structure. However, the influence 
of moving load acceleration/deceleration is included 
with MFM which approves this approach in some cases. 

MMM includes inertial effects of the moving mass, 
with additional effects due to convective derivatives as a 
result, which assures postulation of the problem as in 
analytical case with Eq. (1). The main advantage is the 
possibility to adjust the algorithm to calculate 
frequencies of the system with moving mass included, 
Figure 4.b. This is important at cranes because the 
payload is usually heavier then the structure, therefore 
calculation of structural frequencies with MFM are not 
dealing with satisfactory results. 

MOM can analyze the influence of the flexibility of 
the trolley structure. However, there are no significant 
differences from MMM with realistic crane parameters, 
Figure 5.a. This is in correlation with results from all the 
models that show very small influence on vertical 
displacements of the structure. 

The MOPM is the most complex model as for 
postulation of governing equation as for obtaining the 
results. In this case, CPU time required to obtain the 
solution is much greater but this should be the cost to 
pay if additional parameters are included. The influence 
of payload swinging is very important at gantry cranes, 
especially when expected to achieve high performances 
for the trolley speed pattern, Figure 6. 
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From the given models, authors would like to give 
emphasis on MMM and MOPM. According to 
previously stated, MMM can stand for initial approach 
in moving load problems at gantry cranes, while MOPM 
is extended approach for more satisfactory results in 
cases where anti-sway systems are not developed. 
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СПЕЦИФИЧНОСТИ ФОРМИРАЊА РАЗЛИЧИТИХ 

МАТЕМАТИЧКИХ МОДЕЛА ПРИ АНАЛИЗИ 
ДИНАМИЧКОГ ПОНАШАЊА ПОРТАЛНИХ 

ДИЗАЛИЦА ЗА КОНТЕЈНЕРСКЕ ТЕРМИНАЛЕ 
 

Гашић Влада, Ненад Зрнић, Милорад 
Милованчевић 

 
Рад се бави проблематиком покретног оптерећења 
код порталних дизалица високих перформанси. 
Усвојен је комбиновани приступ, који подразумева 
примену методе коначних елемената у комбинацији 
са једначинама аналитичке механике, за формирање 
математичких модела порталне дизалице. Модел 
колица је разматран кроз неколико модела: покретна 
сила, покретна маса, покретни осцилатор и покретни 
осцилатор са клатном. Сваки од модела има своје 
динамичке карактеристике које профилишу 
динамички одзив структуре дизалице. Решења су 
добијена нумерички, методом директне интеграције, 
разматрањем раванског рамовског 
коначноелементног модела структуре под дејством 
еквивалентног покретног оптерећења на основу 
постављеног система диференцијалних једначина 
другог реда са променљивим коефицијентима. 
Приказана је проблематика која настаје при 
повећању броја параметара при формирању 
динамичког модела-поставци математичког модела. 
На реалном примеру дизалице су дати динамички 
одзиви различитих модела који могу послужити као 
препорука за избор модела у зависности од 
важности жељених динамичких параматара у фази 
пројектовања контејнерских дизалица. 

 


