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Load Models in Structural Dynamics of
Large Gantry Cranes

The paper deals with the moving load problems within the structural
dynamic analysis of a large gantry crane as high-performance machine.
The emphasis is placed on combined method approach, i.e. finite element
method and analytical postulations, to obtain the mathematical model of
crane. Moving trolley is considered throughout several models: moving
force, moving mass, moving oscillator and moving oscillator with swinging
object. Each model has characteristics which determine the responses of
the crane structure, along with its dynamic properties. The title problem is
solved by calculating the forced vibration responses of the two-
dimensional framework with time-dependent property matrices and
subjected to an equivalent moving load. Improving the moving load models
increases complexity as well for postulating as for obtaining the solutions
from overall crane model. Comparative presentation of models is shown
here with conclusion that leads to an appropriate way of model selection
prior to crane problem postulation.
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1. INTRODUCTION

The moving load problem is a very important topic in
structural dynamics. In the beginning, it was related
with the design of railway bridges and highway
structures which showed additional vibration effect
from the vehicle movement. This problem triggered the
research into the moving load problem, initially with
Stokes and Timoshenko. Many papers are presented in
an excellent monograph by Fryba [1], which describes
the basic postulation of moving load problems and their
analytical solutions.

Irrespective  of many viewpoints, moving load
problem methodology has two sides: analytical
approach and finite element approach. Analytical
approach is limited to simple cases of structures (such
as simple beams) and basic types of loads. Closed-form
solution for the governing equations is hard to find,
even for the simple cases, and involves intensive
mathematics. That is why finite element approach
improved the studies in moving load problems with a
wide range of complex structures and load models.
However, it demands certain numerical integration
schemes in the time-domain analysis which can be
intensive computational process.

Over the years, moving load problems have gained
interest in the field of machines and mechanical
structures due to the fact that working parameters are
increasing. Typical structures under a moving load in
mechanical engineering are bridge cranes, gantry
cranes, unloading bridges, tower cranes, cableways,
guideways, and container cranes. Here, the quayside
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container cranes (QCC) and rail mounted gantry
container cranes (RMG) can be pointed out in moving
load analysis because of the high speeds of trolleys,
large lifting capacities and overall structural
dimensions.

This paper studies the dynamic responses of the
RMG container crane subjected to various types of
moving loads-models upon the structural design of
trolleys. The inspiration is gained with the fact that
container transport is increasing yearly average 8% and
that up-to-date RMG cranes can have spans up to 50 m
with trolley speeds of 3 m/s, which place it in high-
performance machine. Thus, mathematical models are
needed for moving load analysis at cranes, particularly
because it is very difficult and expensive in practice to
do an experimental research on a real-size crane.

2. MOVING LOAD MODELS

The main distinction in moving load problems is
modelling of the vehicle/trolley system. First and basic
approach is a moving force model (MFM). Fundamental
postulation is a model of structure as simple beam
subjected to constant force (weight of vehicle-myg, g)
moving with constant speed v, [2]. The moving force
model is easy to use and brings attention in
contemporary studies as well [3].

The moving mass model (MMM) includes inertial
effects of the vehicle/trolley, and in fundamental
postulation, for vertical displacements of the beam-
w(x,f), can be presented as:

o*w o*w
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which clearly indicates the structure-trolley interaction.

Hence, the speed of moving mass, structure flexibility
and the mass ratio of moving payload and structure are

FME Transactions (2013) 41, 311-316 311



important factors that contribute to creating the
interaction force [4]. The interaction force is highly
non-linear in nature in its local and convective
derivatives and changes its position and magnitude with
time, which is usually represented with Dirac delta
function (8), as given in Eq. (1). MMM arises with
comlexity when variable speed of moving load is
included [5]. However, even for the case when more
accurate results are obtained with MMM [6], the
consequences of neglecting this interaction may
sometimes be minor even for the extreme up-to-date
QCC [7]-A moving oscillator model (MOM) assumes
that payload is attached to a mass of moving vehicle
through a spring. The fundamental analytical
postulation is given in [8]. With high values of the
spring stiffness the MOM can be reduces with MMM in
most cases [9].

Structure

Figure 1. a) RMG container crane, b) Moving force (MFM), c)
Moving mass (MMM), d) Moving oscillator (MOM), e)
Moving pendulum (MPM), f) Moving oscillator with
pendulum (MOPM).

In structural dynamics of cranes, the very important
moving load problem is the approach with a model of
moving trolley hoisting a swinging object or moving
pendulum problem (MPM). The literature dealing with
this problem is scarce and only few researches can be
found [10,11]. In some studies [12], it is used equivalent
moving mass matrix which reduce the MPM to MMM.
It is shown that influence of the swinging angle of the
payload is big on horizontal responses of the structure.
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The upgrade of the MPM is the model of trolley
with suspended hoist with swinging object which can be
named as moving oscillator with pendulum (MOPM).
Compared with previous models, this model is the most
complex for gaining the governing equation and
obtaining the solutions [13].

The goal of this paper is to present comparative
overview of the various models usage at gantry crane
dynamics and their characteristics that can lead to
appropriate modelling. The combined method-finite
element and analytical method is adopted to gain the
mathematical models [14]. Prior to gantry crane
dynamics, it can be concluded that every research has to
include following: (i) Both the horizontal and the
vertical responses of the structure, (ii) Real cycle of
trolley movement with emphasis on
acceleration/deceleration periods, (iii) Lowest level of
approximation when trolley inertial effects included.

3. MODEL FORMULATION

The approach used here is a combined finite element
and analytical method for obtaining transverse and
longitudinal vibrations of a gantry crane system
subjected to a moving load. The general approach in
moving load problems at cranes is also used here, thus
the system of the gantry crane (Figure 1.a) is divided
into two parts: the framework (structure) and the
moving system. The framework is a planar (2D) discrete
model consisted of top beam with length L, pier leg with
height H and sheer leg with height 4. The discretization
of the framework (Figure 2.a) is done by using FEM,
with plane-frame elements, [15]. The top beam is
divided in 10 identical elements and each leg by 2
elements. Hence, framework has 41 DOF's (with
extraction of the restrained displacements from
supports) forming the structure displacement vector U.
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Figure 2: a) FE model of the gantry crane structure, b)
Equivalent nodal forces of the elements s, c) Speed pattern
of the moving load, d) Moving load models - MMM, MOM
and MOPM, e) Contact point displacements.
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The global position of the moving system on the top
beam, Figure 2.a, is assumed to be known and defined
by coordinate x,(f). Here, the acceleration/deceleration
is also included in calculation because of the trolley
trapezoidal speed pattern, Figure 2.c. It is assumed, by
model of the gantry crane system, that a loading is
symmetrically distributed on the top beam rail(s) and
furthermore that relationship between the framework
and the moving system can be simplified into one
moving load P(f), with projections in two-dimensional
directions Py(¥) and P,(f), Figure 2.b.

The moving system is considered as MMM, MOM
and MOPM, Figure 2.d, while MFM is used as a special
case of MMM when inertial effects from moving mass
are neglected. The mass of the moving system consists
of a mass of trolley (m;), hoist mass (m,) and payload
mass (m3). According to the used model, additional
DOF's are y-vertical displacement of oscillator and ¢-
swinging angle of the payload. It is assumed that trolley
and structure are always in contact and that trolley is
moving on the smooth surface on the top beam.

4. EQUATION OF MOTION FOR THE SYSTEM

The equation of motion for a multiple degree of
freedom system is represented as follows:

Mq+Cq+Kq=F(r) 2)

where M, C, K are the overall mass, damping and
stiffness matrices of the system, respectively;
q,q, q are, respectively, acceleration, velocity and

displacement vectors for the system and F(¢) is the
external force vector. Apart from the structural
displacement vector U, the overall displacement vector
includes the coordinates y and ¢, which depends on the
used load model.

4.1 Structural stiffness, mass and damping matrix

The equation of motion for a framework (structural
system) is represented as follows:

M, U+C,U+K,U=P(r) 3)

where My, Cy, K¢ are the mass, damping and stiffness

matrices of the structural system; U s U ,Uare the
respective acceleration, velocity and displacement
vectors for the structural system and P(¢) is the external
force vector acting upon the structure.

According to the shown FE model of the framework,
the stiffness matrix can be obtained by assembling all
the element stiffness matrices [16] up to forming the
square matrix K that corresponds with 41 DOF's of the
structure. Similarly, the mass matrix of the framework
M;; can be obtained. As usually practiced in FE
dynamic analysis of MDOF system, the damping matrix
is constructed by using the theory of Rayleigh damping
in following form [17]

Cst =a Mst +b Kst . (4)

with constants ¢ and b that correspond to first two
frequencies and their damping ratios (&).
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4.2 Equivalent nodal forces and external load vector

The structural external force vector P(f) takes the form
[17]

P(1) =[0...£7 (1) £5 (&) 5 () £ (0) £2@t) £5(0)..01" (5)

where f;(t), i=1-6, are the equivalent nodal forces
of the element s, determined by

£ @©= NP0, f30)=N,x)P,(0)
£ ©O=-N@P,(), £()=-N;(OP, () (6)
£2(0)= =N ()P, (1), 2 (6) = ~Ng(x)P, (1)

Noting that / is the element length and x is the
distance along the element s to the point of the
application of the forces (Figure 2.b), the relative
distance is given by § = x/1, thus, the shape functions,

N; = Ni(x) = N(¢) (i =1-6), take the following form
Ny =1-¢,N, =¢,
Ny =1-38 428, Ny =1(E-287+ &),
N5 =38 =28 Ny =1(-&* +&) 7

The trolley moves from left end of the beam, at time
t =0, to the right end with defined speed pattern and its
position on the top beam at time ¢ is known - x,,(f). The
element number s on which the moving forces are
applied, at any time ¢ (¢ 0), is

s = IntegerPart[x’”T(t)] +1. (8)

The nodal forces can be calculated in terms of the
global position, by

_ X (t)—(s-DI

: l

)

According to the Egs. (5,6) one may represent the
element nodal force vector as

POy =NP,-N,"P,. (10)
where

N,=[n5 0 0 N, O 0],
Ny=[0 N, N; 0 N5 Ng]. (11)
Adjustment with total DOF's give the following
matrices

Ny=[0 0 ... N, .. 0],

X

Ny=[0 0 ... Ny ... 0] (12)
These matrices are with non-zero elements which
correspond to the DOF's of element s where the moving
load is located at, while other elements are zero. The
submatrices Ny and Ny are calculated by (9,8,7). One
may see that these matrices engage only 6 values which
move along in the (12), as moving load changes the

position on the top beam.
The axial displacement at any location within the
finite element, w,= w,(x,f), and transversal displacement
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at any location within the finite element w,= wy(x,f),
Figure 2.e, can be presented in matrix form as

w, =NxU,w, =Ny U. (13)

Second derivates of the expression (13) can be
presented [13], in following form

w, = NxU
i, =NyU &> +NyU ¥+ 2Ny U 5+ Ny U (14)

where the superscripts ('), (") are representing the first
and second derivate of expressions (7) with respect to x,
while X is the velocity and X is the acceleration of the
moving system. The structural external force vector
takes the matrix form

P(t)=Ny"P,-N,"P,. (15)
which can be used, in combination with (3), for forced
vibrations of the framework.

The interaction forces between the structure and the
moving load model are, in general,

I)x,y =f(wxawyami,j}7q)7q.))' (16)

which is in detail presented in [13] for MMM, MOM,
MOPM. The additional equations for oscillator and
pendulum are obtained according to the Second
Newton's law. Combination of these equations with Eqgs.
(3-16) up to the form of the Eq. (2) give the equation of
motion for the used system.

The general procedure is to divide the total time T,
needed for moving system to travel from the left end to
the right end of the top beam, into p steps with a time
interval A¢ and to calculate all the given matrices for
each time step » (r =1-p).

5. NUMERICAL RESULTS AND DISCUSSION

Dynamic behaviour of the gantry crane subjected to
various moving loads is obtained by solution of the Eq.
(1). Original in-house software is created to solve the
title problem with direct integration method based on
the Newmark algorithm [18]. The maximal time interval
At is 0.005 s. The gravitational acceleration g is taken to
be 9.81 m/s”. The crane structure is made of steel with
density 7850 kg/m® and modulus of elasticity 2.1 10"
Pa. Initial model includes structural damping with
¢=61=6=0.5 %.

Geometric characteristics of the gantry crane are
L=40 m and H=h=15 m. Element properties are:
4,=0.09 m% 1,=0.041 m' (n=1-10), 4,,=0.085 m’
1,,=0.036 m*, 4,,=0.07 m’, 1,,=0.024 m* and 4,=0.048
m?, 1,=0.01 m* (n=13-14). The moving system consists
of payload of 52 t, trolley of 3 t and hoist of 5 t, thus
mg=60 t. Initial spring stiffness in moving system is
k=10° N/m, while rope length is L,=12 m. The system
moves with 2 speed patterns, where pattern v; assumes
v=3 m/s, a~a4;=0.6 m/s>, which corresponds  to
characteristics of nowadays systems of trolleys, while
the pattern v, assumes v,=5 m/s, a,=a;=1.25 m/s® which
is extreme assumption, but expected in the close future.
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First, the MMM model is analysed. As expected
from physical intuition, the biggest values of vertical
displacements are for node 6, i.e. the middle point.
Horizontal displacements for all the top beam points are
the same, because of high axial stiffness of the
elements. Figure 4 shows the results for both the speed
patterns. The responses are higher for pattern v,. This
influence is very significant for horizontal displacement
Ux; where values reach the maximum of 5.41 c¢cm in the
deceleration period, while maximum value with pattern
vy is 4.1 cm, Figure 3. The difference is much smaller
for the vertical displacement of middle point, Figure
4.b. Maximum values occur when trolley is at midspan,
and for v; is 5.2 cm and 5.4 cm for pattern v,.
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Figure 3: a) Horizontal displacement Ux,, b) Vertical
displacement Uyg; v4,Va.

When inertial effects of the moving mass are
neglected, MFM is analyzed and comparison of results
show big difference in values for horizontal
displacement, Figure 4.a. MFM simplifies the
mathematical algorithm but when MMM is included
one may calculate the frequencies of the whole system
at each time step. The results for first 3 frequencies are
shown at Figure 4.b. It is obvious that frequencies are
dependent on position of mass moving on the top beam.

The vertical and horizontal displacements of node 6,
for MOM model with speed pattern v,, are presented in
Figure 5.a. When compared with values from Figure 3,
for speed pattern v,, one can find negligible difference
because the spring stiffness of k=10° N/m is high
enough to comply with moving mass model.

Here, it is convenient to find the values of vertical
displacement of the beam over the point of contact -wy.
With decrease of stiffness to &=10" N/m, one may see
slight change of displacement y in relation to wy, Figure
5.b. Thus, up to these values there is no significant
influence in dynamic responses of structure.
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Finally, the MOPM model is used. One can find that
increase of acceleration has high influence on the
swinging angle of the payload, which should bring
attention in design. The swinging angle reaches the
value of 14.30, Figure 6.a, in this case. Moreover,
additional inertial effects due to swinging have
influence on horizontal displacements of the structure,
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Figure 6.b, while vertical displacement are similar to the
values with previously presented models.
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6. CONCLUSION

The results from Figure 4.a show that MFM is less
accurate than MMM, considering  horizontal
displacements of the structure. However, the influence
of moving load acceleration/deceleration is included
with MFM which approves this approach in some cases.

MMM includes inertial effects of the moving mass,
with additional effects due to convective derivatives as a
result, which assures postulation of the problem as in
analytical case with Eq. (1). The main advantage is the
possibility to adjust the algorithm to calculate
frequencies of the system with moving mass included,
Figure 4.b. This is important at cranes because the
payload is usually heavier then the structure, therefore
calculation of structural frequencies with MFM are not
dealing with satisfactory results.

MOM can analyze the influence of the flexibility of
the trolley structure. However, there are no significant
differences from MMM with realistic crane parameters,
Figure 5.a. This is in correlation with results from all the
models that show very small influence on vertical
displacements of the structure.

The MOPM is the most complex model as for
postulation of governing equation as for obtaining the
results. In this case, CPU time required to obtain the
solution is much greater but this should be the cost to
pay if additional parameters are included. The influence
of payload swinging is very important at gantry cranes,
especially when expected to achieve high performances
for the trolley speed pattern, Figure 6.
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From the given models, authors would like to give
emphasis on MMM and MOPM. According to
previously stated, MMM can stand for initial approach
in moving load problems at gantry cranes, while MOPM
is extended approach for more satisfactory results in
cases where anti-sway systems are not developed.
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CIIEHU®NYHOCTH ®OPMHUPABA PASJIMUUTHUX
MATEMATHYKUX MOJEJIA ITPU AHAJIN3U
JUHAMUYKOI TIOHAITAIBA ITIOPTAJTHUX

JU3AJINIA 3A KOHTEJHEPCKE TEPMUHAJIE

I'amuh Baaga, Henan 3pauh, Musiopag
Mmunosanuyesnh

Pax ce 6aBu mpobnemaTHKOM TMOKpeTHOTr onrtepehiema
KOIl MOPTAIHHMX AM3AIIMLIA BHUCOKHX MeppOpMaHCH.
VYcBojeH je kombuHosanu npucmyn, KOju TOApa3syMeBa
NpUMEHY METOe KOHAUYHHX eJieMeHaTa y KOMOMHAIUjH
ca jeJHaYMHaAMa aHAIMTHIKE MEXaHUKe, 32 (POPMUparhe
MaTeMaTHYKUX MOJeNa IOopTalHe Iu3anuie. Mopen
KOJIMIIA je pa3MaTpaH Kpo3 HEKOJIHMKO MoJelna: HOKpeTHa
CHJIa, IOKPETHA Maca, IOKPETHU OCLMIATOP M HOKPETHH
ocumnaTop ca kiatHoM. CBakM O MOAeNna MMa CBOje
JUHAMHYKE  KapakTepUCTUKE  Koje  npoduniry
JVUHAMHYKH OJI3MB CTPYKType Iu3aiune. Pemrema cy
Jo0ujeHa HyMEpPHYKH, METOJIOM THPEKTHE HHTErpalyje,
pa3MaTpameM paBaHCKOT paMOBCKOT
KOHAYHOEJIEMEHTHOT MOJIela CTPYKTYpe IOJ J€jCTBOM
eKBHBAJICHTHOI TOKpETHOT onrepehema Ha OCHOBY
MMOCTaBJEEHOT CHUCTeMa AU(EpeHINjaHIX jeTHAYHHA
OpyTor pena ca MPOMECHJBUBAM KOCSQHIINjCHTHMA.
[Mpukazana je mnpoOiemMaTHKa Koja HacTaje TpH
noeehawy Opoja mapamerapa mpu QopMmHpamy
JUHAMHYKOT MOJENA-IOCTAaBIM MAaTEeMaTHYKOI MOJIea.
Ha peanHom mpumepy nu3ajiuie Cy JAaTH JUHAMHYKH
OJI3UBH PA3IMYUTHX MOJEIa KOjU MOTY MOCITY)KHTH Kao
npernopyka 3a H300p Mopesla y 3aBUCHOCTH Of
B)XHOCTH KEJbCHHX JWHAMHYKHX Tapamartapa y (asu
MPOjEKTOBaba KOHTEJHEPCKUX TH3aNHIIA.
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