
Mathematical and Computer Modelling 51 (2010) 1097–1106

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

On the instability of equilibrium of nonholonomic systems with
nonhomogeneous constraints
V. Čović a,∗, M. Vesković b, A. Obradović a
a University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11000 Belgrade, Serbia
b University of Kragujevac, Faculty of Mechanical Engineering, Dositejeva 19, 36000 Kraljevo, Serbia

a r t i c l e i n f o

Article history:
Received 7 March 2009
Accepted 15 December 2009

Keywords:
Lyapunov first method
Nonholonomic system
Instability of equilibrium

a b s t r a c t

The first Lyapunov method, extended by V. Kozlov to nonlinear mechanical systems, is
applied to the study of the instability of the equilibrium position of a mechanical system
moving in the field of potential and dissipative forces. The motion of the system is
subject to the action of the ideal linear nonholonomic nonhomogeneous constraints. Five
theorems on the instability of the equilibrium position of the above mentioned system
are formulated. The theorem formulated in [V.V. Kozlov, On the asymptotic motions of
systems with dissipation, J. Appl. Math. Mech. 58 (5) (1994) 787–792], which refers to the
instability of the equilibrium position of the holonomic scleronomic mechanical system
in the field of potential and dissipative forces, is generalized to the case of nonholonomic
systems with linear nonhomogeneous constraints. In other theorems the algebraic criteria
of the Kozlov type are transformed into a group of equations required only to have real
solutions. The existence of such solutions enables the fulfillment of all conditions related to
the initial algebraic criteria. Lastly, a theorem on instability has also been formulated in the
case where the matrix of the dissipative function coefficients is singular in the equilibrium
position. The results are illustrated by an example.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the motion of a scleronomic mechanical system with m degrees of freedom in a stationary field
of viscous forces and a stationary field of potential forces, this motion being subject to the action of l (l < n) ideal, linear,
nonhomogeneous nonholonomic mutually independent constraints. Let the configuration of the system be determined by
n = m + l generalized coordinates q = (q1, . . . , qn), with a corresponding vector of generalized velocities q̇ =

(
q̇′, q̇′′

)
,

where q̇′ =
(
q̇1, . . . , q̇m

)
, q̇′′ =

(
q̇m+1, . . . , q̇n

)
. The equations of the constraints, the kinetic energy, potential energy and

the Rayleigh dissipative function have the form, respectively,1

Bνi (q) q̇
i
+ Bν (q) = 0, (1)

T =
1
2
aij (q) q̇iq̇j, (2)

Π = Π(q), (3)

Φ =
1
2
dij (q) q̇iq̇j. (4)
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1 In this paper indices take the following values: α, β, γ , δ = 1, . . . ,m; ν, ρ, θ = m+ 1, . . . , n; i, j = 1, . . . , n.
Further: δji = 1∀i = j, δ

j
i = 0∀i 6= j.
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The kinetic energy T is positively definite, while the Rayleigh dissipative function Φ is in general semi-definite in q̇i, for all
values of qi.
Motions of the given system are solutions of the differential equations (1) which, as the constraints are mutually

independent (rank
[
Bνi (x)

]
= l), can be presented in the form:

q̇ν = bνα (q) q̇
α
+ bν (q) , (5)

and in the form of the differential equations

d
dt
∂T
∂ q̇α
−
∂T
∂qα
+
∂Φ

∂ q̇α
+
∂Π

∂qα
+ bνα

[
d
dt

(
∂T
∂ q̇ν

)
−
∂T
∂qν
+
∂Φ

∂ q̇ν
+
∂Π

∂qν

]
= 0, (6)

or, in explicit form

aαjq̈j + Γjk,α q̇jq̇k + dαjq̇j + ∂Π/∂qα + bνα
(
aνjq̈j + Γjk,ν q̇jq̇k + dνjq̇j + ∂Π/∂qν

)
= 0, (7)

where Γjk,i are Christoffel’s symbols of the first kind with respect to the metrics dσ 2 = ajkdqjdqk/2.
One assumes that the functionsΠ (q) , aij(q), dij (q) , bνα(q) and b

ν (q) are infinitely differentiable.
If the conditions

(
∂Π/∂qi

)
(qo) = 0 and bν(qo) = 0 are satisfied at some point q = qo, then qi = qio is the solution (for

t ≥ to) of differential equations (5) and (7). In that case the point q = qo is a position of equilibrium of the second (II) kind.
Further, without loss of generality, it can be accepted that qo = 0.
Let a regular transformation of coordinates

qα = ξα, qν = ξ ν + bναoξ
α, bναo = b

ν
α(q=0), (8)

be performed, after which the equations of nonholonomic constraints (5) take the form

ξ̇ ν = b̄νβ ξ̇
β
+ b̄ν, b̄να = b

ν
α(qα=ξα ,qν=ξν+bναoξα)

− bναo, b̄ν = bν(qα=ξα ,qν=ξν+bναoξα)

with

b̄ναo = b̄
ν
α(ξ=0) = 0, (9)

where ξ =
(
ξ 1, . . . , ξ n

)
. It will be assumed further that the transformation (8) is performed, and that the previous notations

are preserved for all quantities, including the generalized coordinates. In addition to this, it will be considered that a part of
the dissipative function

Φ∗ =
1
2
dαβ (q) q̇α q̇β (10)

is positively defined in q̇′ = (q̇1, . . . , q̇m).
Let

Π (q) = Π (r+1) (q)+Π (r+2) (q)+ · · · (11)

be Maclaurin’s series for potential energy. Furthermore, let

bν(q) = bν(s)(q)+ b
ν
(s+1)(q)+ · · · (12)

be Maclaurin’s series for the function bν(q) appearing in (5), where bν(0) = 0 is taken into account. In previous relations
(·)(p)(q), (·)(p)(q) denote the corresponding homogeneous forms of degree p.
Forms linear with respect to generalized velocities are also presented in the explicit expressions of Eqs. (5) and (7). The

solution of these equations with respect to forms quoted is

bij(q)q̇j = Fi(q)+ Gi,j,k(q)q̇jq̇k + Gij(q)q̈j, (13)

with

bαj(q) = dαj(q)+ bνα(q)dνj(q), bνα(q) = −δνρbρα(q), bνρ(q) = δνρ
Fα(q) = −∂Π/∂qα − bνα∂Π/∂q

ν, Fν(q) = δνρbρ(q), Gαj(q) = −aαj − bναaνj
Gνj(q) ≡ 0, Gi,j,α(q) = −Γjk,α − bναΓjk,ν,Gij,ν(q) ≡ 0.

wherefrom, taking into account that det[bij(q = 0)] = det[dαβ(q = 0)] 6= 0 holds, one can form the so-called truncated
equations (cf. (11) and (12))

q̇ν = 0,

dαi(0)q̇i = −∂Π (r+1)(q)/∂qα, (14)
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in the case of r < s (case C1) or

q̇ν = bν(r)(q),

dαi(0)q̇i = −∂Π (r+1)(q)/∂qα, (15)

in the case of s = r (case C2) or, finally,

q̇ν = bν(s)(q),

dαi(0)q̇i = 0, (16)

in the case of r > s (case C3).
In accordance with the main results of papers [1–4] relating to the generalization of the first Lyapunov method to the

strictly nonlinear systems of differential equations, further studies are based on the following statement: if differential
equations (13) allow for the existence of the solution q = q(t) with the characteristic q(t) → 0 as t → −∞ then the
equilibrium state q = 0, q̇ = 0 of the discussed mechanical system will be unstable. In the case of r > 1 (cf. (14)),the
mentioned solution is sought in the form of the infinite series (possibly also divergent):

∞∑
j=1

aj (ln (−t)) (−t)−jµ , (17)

where (cf. [1,2]) a1 = const., whereas a2, a3 . . . are vector polynomials in ln(−t) and µ > 0. If the above series exists and
if it is convergent, it represents the solution q = q(t) of the Eq. (13) having the property q(t) → 0 as t → −∞. If this
series exists and if it is divergent, then, as shown in [5], there exists the solution q̃ = q̃(t) of the Eq. (13) for which the series
(17) represents an asymptotic presentation. The conclusion is that the existence of the series (17) has as a consequence
the instability of the equilibrium state q = 0, q̇ = 0 of the system whose movement is described by the differential
equations (13).
From now on r > 1 will be valid. The case r = 1 has been solved in [6] and will not be discussed here.

2. The instability of equilibrium in the field of potential and dissipative forces — case C1

The theorem on the instability of equilibrium of the holonomic scleronomicmechanical system, moving in a field of both
conservative and dissipative forces, formulated in [1] will be further generalized to the case when linear nonhomogeneous
nonholonomic constraints are imposed to the system, by the following

Theorem 1. Let r < s, and let the function Π̃ (r+1)
= Π (r+1)(q′, q′′ = 0) has no minimum in the point q′ = 0. Under these

conditions the equilibrium state q = 0, q̇ = 0 is unstable.

Proof. In order to find conditions for the existence of series (17) under the conditions of Theorem 1, it is assumed that
(cf. [1]): µ = 1/(r − 1), a1 = λe, where λ > 0, e = (e1, . . . , en),

√
dij (0) eiej − 1 = 0. The series (17), included in the

differential equations (5) and (7), gives the following relations (shown are only terms relevant to defining vector a1):

1
r − 1

λeν(−t)−r/(r−1) + · · · = 0, (18)(
1
r − 1

λeidαi(0)+ λr
∂Π (r+1)

∂qα
(e)
)
(−t)−r/(r−1) + · · · = 0, (19)

or

eν = 0, (20)

κdαβ(0)eβ = −
∂Π̃ (r+1)

∂qα
(e′) (21)

where

e′ = (e1, . . . , em), (22)

κ =
1

λr−1(r − 1)
. (23)

The condition λ > 0 will be fulfilled if κ > 0. As from (21), with the condition√
dij (0) eiej − 1 = 0, (24)
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or (cf. (20))√
dαβ (0) eαeβ − 1 = 0, (25)

one obtains

κ = − (r + 1) Π̃ (r+1)(e′),

it follows that κ > 0will exist if the vector e′ = e′∗ representing the solution of the Eqs. (21) and (25) satisfies the condition
Π̃ (r+1)(e′∗) < 0, too. In accordance with the conditions of the theorem it is fulfilled, which can be proved, as in [1,2], using
the conditions of the minimum of the function Π̃ (r+1)

= Π̃ (r+1)(q′) on the ellipsoid (25). This minimum exists under the
conditions of Theorem 1, and is determined just by the Eqs. (21) and (25).
In this way the existence of the vector e, such that a1 = λe, λ > 0, is proved. It follows that series (17) exists, as

the existence of its first term with the properties described leads to the existence of the remaining terms of the series
through the chain of linear nonhomogeneous differential equations with constant coefficients. Functions which lead to the
nonhomogeneity of these equations represent known polynomials of the variable ln(−t). This establishes the existence of
the solution demanded with asymptotic behavior, and there from also the instability of the equilibrium state q = 0, q̇ = 0
of the system whose motion is described by the differential equation (13), is established by this. Theorem 1 is proved. �

Note 1. The case of absence of dissipation, if bν ≡ 0, is solved in [7,8].

Note 2. As (cf. (4)) can be a semi-definite function of variables q̇ = (q̇1, . . . , q̇n), in the following consideration instead of
(24), the norm√

aij (0) eiej − 1 = 0. (26)

is accepted. The case with dissipation, if bν ≡ 0, is solved in [12].

3. The instability of equilibrium in the field of potential and dissipative forces — case C2

The series (17), forµ = 1/(r−1), included in the differential equations (5) and (7), gives the following relations (shown
are only terms relevant to defining vector a1):(

1
r − 1

λeν − λrbν(r)(e)
)
(−t)−r/(r−1) + · · · = 0, (27)(

1
r − 1

λeidαi(0)+ λr
∂Π (r+1)

∂qα
(e)
)
(−t)−r/(r−1) + · · · = 0, (28)

which result in

κeν − bν(r)(e) = 0, (29)

κdαi(0)ei +
∂Π (r+1)

∂qα
(e) = 0, (30)

where κ is defined by relation (23).
As stated in the previous section, the existence of series (17) is ensured by the real solutions e = e∗ 6= 0, κ > 0 of

Eqs. (29), (30) and (26). Further study will bring these equations to a form much more simple than the original one. The
discussion that ensues can be applied also to all analogous algebraic criteria present in the papers [1–4,9].
Let the Eqs. (26), (29) and (30) have the real solutions

ei = e∗i, κ = κ∗, κ∗ > 0, (31)

and let, further, the transformation

ẽi = ρe∗i, ρ = const., ρ > 0, (32)

be performed.
With this remark the Eqs. (29) and (30) get the form, respectively,

κ∗ẽνρr−1 − bν(r)(ẽ) = 0 (33)

κ∗dαi(0)ẽiρr−1 +
∂Π (r+1)

∂qα
(ẽ) = 0, (34)

where ẽ =
(
ẽ1, . . . , ẽn

)
.
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If choosing a positive scalar ρ such that

κ∗ρr−1 = 1 (35)
the vector e = ẽwill satisfy the equations (cf. (33) and (34)

ẽν − bν(r)(ẽ) = 0, (36)

dαi(0)ẽi +
∂Π (r+1)

∂qα
(ẽ) = 0. (37)

Hence follows that if the equations

eν − bν(r)(e) = 0, (38)

dαi(0)ei +
∂Π (r+1)

∂qα
(e) = 0. (39)

have the real solution e = ẽ, then Eqs. (29), (30) and (26) also have the real solution e = e∗ = ẽ/ρ, κ∗ = 1/ρr−1. Then it is
obvious that

ρ =

√
aij (0) ẽiẽj. (40)

It is possible now to formulate the following

Theorem 2. Let r = s, and let the equations

dαi(0)ei +
∂Π (r+1)

∂qα
(e) = 0, eν − bν(r)(e) = 0,

have real nontrivial solution e = ẽ. Under these conditions the equilibrium state q = 0, q̇ = 0 is unstable.
Proof. If the mentioned algebraic equations have the real solution e = ẽ it follows, according to the previous discussions,
that the Eqs. (29) and (30) as well have the solutions e = e∗ = ẽ/ρ, κ = κ∗ = 1/ρr−1, where ρ =

(
aij (0) ẽiẽj

)1/2. It
follows therefore that the series (17) exists and, especially, that the equilibrium state q = 0, q̇ = 0 of the system (13) is
unstable. �

4. The instability of equilibrium in the field of potential and dissipative forces — case C3

The case discussed next is r > s, s > 1. In this case the series (17), for µ = 1/(s − 1), included in the differential
equations (5) and (7), gives the following relations (shown are only terms relevant to defining vector a1):(

1
s− 1

λeν − λsbν(s+1)(e)
)
(−t)−s/(s−1) + · · · = 0, (41)

1
s− 1

λeidαi(0)(−t)−s/(s−1) + · · · = 0, (42)

which gives

κ1eν − bν(s)(e) = 0, (43)

dαi(0)ei = 0, (44)
where

κ1 =
1

λs−1(s− 1)
.

Eq. (44) can be presented in the form shown below

eα = −rαβdβν(0)eν (45)

where dαβ(0)rβγ = δ
γ
α .

If the function b̃ν(s) = b̃
ν
(s)(q

′′) is introduced in the following way

b̃ν(s)(q
′′) =

(
bν(s)(q)

)
(qα=−rαβdβνqν)

, (46)

the Eq. (43) becomes

κ1eν − b̃ν(s)(e
′′) = 0, (47)

where e′′ = (em+1, . . . , en).



1102 V. Čović et al. / Mathematical and Computer Modelling 51 (2010) 1097–1106

Study analogous to that from the previous section results in the conclusion that if equations

eν − b̃ν(s)(e
′′) = 0

have real nontrivial solution e′′ = ẽ′′ then (47) will also have the solution e′′ = e′′∗ = ẽ′′/ρ, κ∗1 = 1/ρ
(s−1), where

ρ =
√
aij (0) ẽiẽj. It is obvious that (cf. (45)) ẽα = −rαβdβν(0)ẽν and e∗α = −rαβdβν(0)e∗ν are valid.

Now it is possible to formulate the next

Theorem 3. Let r > s, s > 1 hold, and let the equations

eν − b̃ν(s)(e
′′) = 0

have real nontrivial solution e′′ = ẽ′′. Under these conditions the equilibrium state q = 0, q̇ = 0 is unstable.
Proof. If the algebraic equations mentioned above have a real solution e = ẽ it follows, according to previous analysis, that
the Eqs. (29) and (30) have nontrivial solutions e = e∗ = ẽ/ρ, κ1 = κ∗1 = 1/ρ

s−1, where ρ =
(
aij (0) ẽiẽj

)1/2, too. Fromhere
it follows that the series (17) exists and, especially, that the equilibrium state q = 0, q̇ = 0 of system (13) is unstable. �

5. The singular case

The case under consideration is the one when Maclaurin’s series for dissipative function coefficients dij = dij (q) has the
form

dij = d
(l)
ij (q)+ d

(l+1)
ij (q)+ · · · , (48)

where d(l)ij = d
(l)
ij (q) is the homogeneous forms of degree l. It is obvious that in this case, which will be called singular, the

below relation is valid
det[dij(0)] = 0, (49)

the implication being that differential equations (13) cannot be solved explicitly by generalized velocities. In order to
overcome this problem, equations of nonholonomic constraints (5) are being differentiated by the time:

q̈ν = bνα (q) q̈
α
+
∂bνα (q)
∂qi

q̇α q̇i +
∂bν (q)
∂qi

q̇i. (50)

The next case under discussion is l > (r − 1) /2 and s > (r + 1) /2. When series (17), with µ = 2/(r − 1) gets inserted
into differential equations (7) and (50) by standard procedure the below algebraic criteria is achieved

κ2aαj(0)ej +
∂Π (r+1)

∂qα
(e) = 0, (51)

eν = 0, (52)
where

κ2 = 2
(r + 1)

(r − 1)2 λr−1
. (53)

It is clear that (51), in view of (52), can also be written in the form

κ2aαβ(0)eβ +
∂Π̃ (r+1)

∂qα
(e′) = 0, (54)

where Π̃ (r+1)
= Π (r+1)(q′, q′′ = 0).

The theorem on instability of equilibrium of the holonomic scleronomic mechanical system, moving in a field of
both conservative and dissipative forces, formulated in [1], will be further generalized to the singular case when linear
nonhomogeneous nonholonomic constraints are imposed on the system, by the following

Theorem 4. Let l > (r − 1) /2 ∧ s > (r + 1) /2, and let the function Π̃ (r+1)
= Π (r+1)(q′, q′′ = 0) has no minimum in the

point q′ = 0. Under these conditions the equilibrium state q = 0, q̇ = 0 of the system (7) and (50) is unstable.
Proof. The first proof phase is identical as in the case of Theorem 1. That phase proves the existence of series (17) for
µ = 2/(r − 1). It follows that κ2 > 0 will exist if the vector e′ = e′∗ representing the solution of the Eqs. (26) and (54)
satisfies the condition Π̃ (r+1)(e′∗) < 0, as well. In accordance with the conditions of the theorem it has been fulfilled, which
can be proved, as in Theorem 1, using the conditions of the minimum of the function Π̃ (r+1)

= Π̃ (r+1)(q′) on the ellipsoid√
aαβ (0) eαeβ − 1 = 0. (55)

This minimum exists under the conditions of Theorem 4, and is determined just by the Eqs. (54) and (55). It remains to
prove that conclusions relating to Eq. (50) are also extended to (5). That is, differential equation (50) have the first integrals
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of the form

q̇ν = bνα (q) q̇
α
+ bν (q)+ cν, cν = const., (56)

which correspond with the equations of nonholonomic constraints only if cν = 0. Taking into account that q(t) →
0 ∧ q̇(t)→ 0 as t → −∞ it follows that bν (q)→ 0 as t → −∞ wherefrom it can be concluded that cν = 0. Theorem 4
is proved. �

In the singular case where it holds that s = l+1∧ l < (r−1)/2 the series (17), forµ = 1/(r− l−1), included in differential
equations (7) and (50), gives the following relations, respectively (shown are only terms relevant to defining vector a1):

(−t)−(2r−2l−1)/(r−l−1) λ(r − l)a∗αi(0)e
i/(r − l− 1)2 + b(l)αi (e

′)λl+1ei (−t)−r/(r−l−1) /(r − l− 1)2

+ λr
∂Π (r+1)

∂qα
(e) (−t)−r/(r−l−1) + · · · = 0, (57)

(−t)−(2r−2l−1)/(r−l−1) λ(r − l)eν/(r − l− 1)2 −
∂bν(l) (q)
∂qi

(e)λl+1ei (−t)−r/(r−l−1) /(r − l− 1)2 = 0. (58)

Taking into account that l < (r − 1)/2 holds, one concludes that r − l − 1 > l → r − l − 1 > 0 and 2r − 2l − 1 > r .
Wherefrom, with respect to (57) and (58), it follows

κ3d
(l)
αi (e)e

i
+
∂Π (r+1)

∂qα
(e) = 0, (59)

bν(l+1) (e) = 0, (60)

where

κ3 =
1

λr−l−1(r − l− 1)2
. (61)

The truncated differential equations corresponding to the algebraic criteria (59) and (60) have the form

r (l)αi (q)q̇
i
+
∂Π (r+1)

∂qα
(q) = 0, (62)

r (l)νi (q)q̇
i
= 0, (63)

where r (l)αi (q) = d
(l)
αi (q), r

(l)
νi (q) = ∂b

ν
(l+1) (q) /∂q

i.
The differential equations (62) and (63) cannot be solved with respect to the generalized velocities, as det[r (l)ij (0)] = 0.

Despite this fact (cf. [10]), if there exists real solution e = ẽ for algebraic equations

d(l)αi (e)e
i
+
∂Π (r+1)

∂qα
(e) = 0, (64)

bν(l+1) (e) = 0, (65)

and the condition det[r (l)ij (ẽ)] 6= 0 is fulfilled, the existence of the series will be provided (17).
Now it is possible to formulate the next

Theorem 5. Let s = l+ 1∧ l < (r − 1)/2 holds, and let the condition det[d(s)ij (ẽ)] 6= 0 is fulfilled, where e = ẽ is a real zero of

the vector fields b(s)αi (e)e
i
+

∂Π (r+1)

∂qα (e) and bν(s) (e) .
Under these conditions the equilibrium state q = 0, q̇ = 0 of the system (7) and (50) is unstable.

The proof for Theorem 5 follows up the scheme as given in proof for Theorem 4 from [10].

6. Example

A. Systemswith cyclic coordinates. One considers a holonomicmechanical systemmoving in a field of potential and dissipative
forces. The configuration of the system is determined by a set of generalized coordinates q = (q1, . . . , qm, ξm+1, . . . , ξ n).
Let the kinetic and potential energy of the system have the form

T =
1
2

(
aαβ

(
q′
)
q̇α q̇β + aαν q̇α ξ̇ ν + aνα ξ̇ ν q̇α + aνρ ξ̇ ν ξ̇ρ

)
, (66)

Π = Π(q′), (67)

where q′ =
(
q1, . . . , qm

)
, m = n− l, l > 0.
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Let the dissipation be incomplete, with the dissipation function

Φ∗ =
1
2
dαβ

(
q′
)
q̇α q̇β , (68)

positively definite in q̇′ =
(
q̇1, . . . , q̇m

)
.

It is obvious that the differential equations of motion of the considered system have l cyclic integrals in the form

∂T
∂ q̇ν
= cν → avα q̇α + avρ ξ̇ρ = cν, cν = const.,

whose solution with respect to cyclic generalized velocities ξ̇
′′

=
(
ξ̇m+1, . . . , ξ̇ n

)
has the form

ξ̇ ν = b̄να
(
q′
)
q̇α + b̄ν

(
q′
)
, (69)

where

b̄να
(
q′
)
= −eνρ

(
q′
)
aρα

(
q′
)
, b̄ν

(
q′
)
= eνρ

(
q′
)
cρ . (70)

The above expression includes the coordinates of the matrix [eνρ],which is inverse to the matrix [aνρ] : eνρaθρ = δνθ .
Relation (69) is being transformed into the form

q̇ν = bνα
(
q′
)
q̇α + bν

(
q′
)
,

where

qν = ξ ν − b̄να (0) q
α
− b̄ν (0) t,

bνα
(
q′
)
= b̄να

(
q′
)
− b̄να (0) ,

bν
(
q′
)
= b̄ν

(
q′
)
− b̄ν (0) .

It is well known that the system given with cyclic coordinates can be considered as a system with nonholonomic linear
nonhomogeneous constraints, which represent the cyclic integrals (69). Obviously, the quoted nonholonomic system is of
the Chaplygin type. Its differential equations are given by (69) and by the equations and by the equations

d
dt
∂T ∗

∂ q̇α
−
∂T ∗

∂qα
+ cν

(
γ ναβ q̇

β
+ γ να

)
+
∂Π

∂qα
+
∂Φ

∂ q̇α
= 0, (71)

where

T ∗ = T ∗2 +
1
2
eνρ

(
q′
)
cνcρ .

A particular example of a system with cyclic coordinates is presented below.
It is obvious that differential equations (71) can also be presented in the form (6).

B. Example. The rod 4, orthogonally bent in C (Fig. 1), can slidewithout friction along the symmetric guide 7, rigidly connected
to the telescopic rod 1 of negligiblemass. The axis of the guide is orthogonal to the axis of rod 1. Another end of the telescopic
rod 1 is connected to joint A, having the vertical axis which contains the centre of mass of guide 2. The moment of inertia
of guide 7 with respect to the fixed central vertical axis with which it is hinged, is J = ml2. Telescopic rod, of negligible
mass, is hinged by one end B to end of rod 4 while its other end is rigidly attached to the symmetric homogeneous guide 2
having the axis perpendicular to the axis of the telescopic rod 3. Rod 5 can slide without friction in guide 2. Rod 5 is attached
by one end to a joint on whose vertical axis is point C . The mass of guide 3 is 2m, its moment of inertia with respect to
the central vertical axis, which cuts the axis of telescopic rod 3, is J = ml2. The configuration of the system is determined
by generalized coordinates (ϕ, θ). The forces acting in points A and B are EF = F (ϕ) Ee and EF ′ = −EF , respectively, where
Ee =
−→
BA/BA, F (ϕ = 0) = 0, F ′ (ϕ = 0) 6= 0. During the motion there appear, between the guide 2 and the rod 5, forces

of viscous friction EFw = −βEvr and EF ′w = −βEv
′
r acting on guide 2 and rod 5, respectively, where Evr is the relative velocity

of guide 2 with respect to rod 5, Ev′r = −Evr , β = const., β > 0. Prove that there exists a stationary motion of the system
ϕ = 0, θ = θ̇ot , and verify its stability. Neglect the mass of rods 4 and 5. CB = l. Function F (ϕ) is infinitely differentiable.
The system moves in a horizontal plane.
Solution. The kinetic energy of the system is

T =
1
2
ml2 (2− cos 4ϕ) ϕ̇2 +

1
2
ml2

(
2+ 2 sin4 ϕ

)
θ̇2 −ml2ϕ̇θ̇ , (72)

and the generalized forces of the system
(
EF , EF ′

)
are

Qϕ = −lF (ϕ) sinϕ, Qθ ≡ 0, (73)
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Fig. 1.

wherefrom it follows that the potential energy of this force has the form

Π1 = l
∫ ϕ

0
F (ϕ) sinϕdϕ (74)

while its Maclaurin’s series is

Π1 =
l
3
F ′(0)ϕ

3
+
l
8
F ′′(0)ϕ

4
+ · · · (75)

The dissipative function has the form

Φ =
βl2

2
cos2 ϕϕ̇2. (76)

It is obvious that θ is a cyclic coordinate. The corresponding cyclic integral reads

ml2
(
2+ 2 sin4 ϕ

)
θ̇ −ml2ϕ̇ = c, c = const., (77)

or, in the form of a linear nonholonomic nonhomogeneous constraint

θ̇ =
1

2
(
1+ sin4 ϕ

) ϕ̇ + c
2ml2

(
1+ sin4 ϕ

) , (78)

or

θ̇ −
1
2
ϕ̇ −

c
2ml2

=

[
1

2
(
1+ sin4 ϕ

) − 1
2

]
ϕ̇ +

[
c

2ml2
(
1+ sin4 ϕ

) − c
2ml2

]
. (79)

By transformation

θ = ε +
1
2
ϕ +

c
2ml2

t, (80)

Eq. (79) obtains the form

ε̇ =

[
1

2
(
1+ sin4 ϕ

) − 1
2

]
ϕ̇ +

[
c

2ml2
(
1+ sin4 ϕ

) − c
2ml2

]
, (81)

and time t does not figure explicitly in the equation for kinetic energy which now looks like

T̃ =
1
2
ml2 (2− cos 4ϕ) ϕ̇2 +

1
2
ml2

(
2+ 2 sin4 ϕ

) (
ε̇ +

1
2
ϕ̇ +

c
2ml2

)2
−ml2ϕ̇

(
ε̇ +

1
2
ϕ̇ +

c
2ml2

)
. (82)
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The differential equation of motion in regards to the coordinate ϕ is

−
1
16
ml2 (−27+ 4 cos 2ϕ + 15 cos 4ϕ) ϕ̈ +

(
ml2 sin4 ϕ

)
ε̈ +ml2

(
cosϕ sin3 ϕ + 2 sin 4ϕ

)
ϕ̇2 +

(
βl2 cos2 ϕ

)
ϕ̇

−
(
4ml2 cosϕ sin3 ϕ

)
ε̇2 −

(
4c cosϕ sin3 ϕ

)
ε̇ + F(ϕ)l sinϕ −

c2 cosϕ sin3 ϕ
ml2

= 0. (83)

The reduced potential energy has the form

Π = l
∫ ϕ

0

[
F (ϕ) sinϕ −

c2 cosϕ sin3 ϕ
ml2

]
dϕ (84)

and its Maclaurin’s series is

Π =
l
3
F ′(0)ϕ

3
+
1
4

(
l
2
F ′′(0) −

c2

ml2

)
ϕ4 +

l
30

(
F ′′′(0) − F

′

(0)

)
ϕ5 + · · · (85)

It is obvious that differential equations (81) and (83) allow the solution

ϕ = 0, ε = 0, t ∈ [to,∞) (86)

finding suitable the (cf. (80)) steady motion

ϕ = 0, θ =
c
2ml2

t, t ∈ [to,∞). (87)

Maclaurin’s series (12) (cf. (81)) is

b2 = −
c
2ml2

ϕ4 +
c

32ml2
ϕ6 + · · · (88)

while the first nontrivial form in (85) is of an odd degree. Therefrom, in accordancewith Theorem 1, the equilibrium position
(86) is unstable. The same conclusion applies to steady motion (87).

Note 3. Because of the presence of dissipative forces the previous problem cannot be solved by applying (see: [10,11])
Hagedorn’s variational approach to the stability of motion.

Acknowledgments

This workwas supported by the Republic of Serbia, Ministry of Science and Technological Development, through projects
No. 144019 and No. 114052.

References

[1] V.V. Kozlov, On the asymptotic motions of systems with dissipation, J. Appl. Math. Mech. 58 (5) (1994) 787–792.
[2] V.V. Kozlov, S.D. Furta, Lyapunov’s first method for strongly non-linear systems, Prikl. Math. Mekh. 60 (1) (1996) 10–22 (in Russian).
[3] V.V. Kozlov, On the stability of equilibria of non-holonomic systems, Soviet. Math. Dokl. 33 (3) (1986) 654–656 (in Russian).
[4] V.V. Kozlov, Asymptotic motions and inversion of the Lagrange–Dirichlet theorem, J. Appl. Math. Mech. 50 (6) (1986) 719–725.
[5] A.N. Kuznetsov, The existence of solutions of an autonomous system, recurring at a singular point, having a formal solution, Funktsional. Anal. i
Prilozhen. 23 (4) (1989) 63–74.

[6] A.M. Lyapunov, The general problem of the stability of motion, Khar‘kov Mat. Obshch., Khar‘kov, 1892.
[7] M. Vesković, On the instability of equilibrium of non-holonomic systemswith a non-analytic potential, Int. J. Non-LinearMech. 31 (4) (1996) 459–463.
[8] M. Vesković, V. Čović, Lyapunov first method for nonholonomic systems with circulatory forces, Math. Comput. Modelling 45 (2007) 1145–1156.
[9] V. Čović, M. Vesković, A. Obradović, On the Instability of Steady Motion, Meccanica (under review).
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