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Abstract: In this paper we present the solution of exact equations of motion for coupled axial and 
bending vibrations of a non-uniform axially functionally graded (AFG) cantilever beam with a 
body of which mass center is eccentrically displaced in axial and transverse direction with respect 
to the beam’s end. The Euler-Bernoulli beam theory is implemented to model behavior of the 
beam under axial and transverse in-plane vibrations. Based on the paper [1], that is supported by 
results publish in the paper [2] authors confirm the obtained results of natural frequencies of the 
AFG cantilever beam, when boundary conditions define the vibration coupling. The modified 
symbolic-numeric method of initial parameters presented in [3] is implemented in computing 
natural frequencies of the beam. This method is expanded to solve axial-bending vibration 
problems, with respect to the one presented in the literature [3] for the problem of the vibration of 
a cantilever beam. Some minor deviations in the obtained results may be noticed with respect to 
those obtained in [1], yet all within a tolerance domain due to the computational precision.  
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1. Introduction 
 

Elastic beams, as one of the most commonly used structural elements, are omnipresent in 
engineering constructions. Due to increasing demands in the reduction of structural weights, 
while thermal or mechanical durability is not compromised, functionally graded materials have 
often been used, as engineering materials of choice. These materials are also more superior to 
steel in chemical resistance to aggressive substances and they can be highly attractive in terms of 
aesthetics demands. One of the main advantages of functionally graded materials to laminated 
composite materials is the absence of concentrated interlaminar stresses [4]. The reason of this 
absence is a characteristic of FGMs that changes of material characteristics occur smoothly, in a 
manner of gradient distribution from one end of a beam to the opposite one. Furthermore, a 
functionally graded material may be designed to satisfy specific constructional needs. Significant 
research has been implemented in producing parts of FGMs using additive manufacturing 
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techniques [5,6,7,8]. FGMs are mainly used in those applications where combinations of two 
extreme properties are required in a single component for example hardness and toughness [9]. 
We shall not discuss in details material characteristics of functionally graded materials in this 
paper. Readers are encouraged to look for details in the following literature sources [10,11,12]. 

In order to avoid natural frequencies, so designers may avoid resonant conditions, researchers 
have introduced and implemented various models for the modal analysis of AFG beams. 
Literature offers two different approaches to solving problems of vibration of functionally graded 
beams. One approach is based on solving the governing partial differential equations of motion, 
while the second one is based on the discretization of a beam to a set of rigid segments mutually 
connected by elastic elements. Methods based on discretization of elastic elements shall not be 
discussed in this paper. For further readings in this topic we may kindly suggest a literature 
review and the presented approach presented by Nikolić in [1].  

Several theories are presented in the literature for modeling the elastic behavior of AFG 
beams, namely Euler-Bernoulli Theory, Timoshenko Beam Theory and higher order shear 
deformation theories. The Euler-Bernoulli deformation theory will be implemented in the 
background of the conducted computational research, as it was implemented in [13], when 
shooting method was used for solving problems of vibration of a beam made of non-
homogeneous material. The presented paper discusses only cases when shear deformation and 
rotary inertia effect may be neglected in the analysis of beam’s dynamical behavior.  To compare 
results obtained using the modified symbolic numeric method of initial parameters with those 
gained through the numerically efficient rigid element method as in [1]. Temperature flux 
influences were not included in this paper, yet it can be treated in future research activities. 

In this paper we present an implementation and generalization of the modified Symbolic-
Numeric method of initial parameters presented in [3] in order to make a solid foundation model 
for determining natural frequencies of elastic beams. The proposed method does not pose any 
restrictions on a type of material or a cross-sectional profile of the cantilever beam. Only the case 
of a cantilever beam with attached eccentric end mass is considered in this paper. 
 
2. Formulation of the problem 
 

The elastic cantilever beam, introduced in Figure 1 is clamped at the left end, while the 
motion of the right end is unconstrained. Rigid body of mass mR is attached to the right end of 
cantilever beam. Its mass center is eccentrically displaced as presented in the Figure 1. We 
analyze the beam’s motion with respect to the inertial coordinate system Oxyz. 
 

 
Fig. 1. An undeformed elastic cantilever beam with a tip mass presented schematically as in [1], except 

the orientation of coordinate system 



A. Tomović, S. Šalinić, A. Obradović, M. Lazarević, Z. Mitrović: The exact natural frequency solution of a free axial-  
bending vibration problem of a non-uniform AFG cantilever beam with a tip body  
 

3 

 
Governing equations of motion in axial and transverse direction of presented cantilever beam 

under the assuption of validity of Euler-Bernouli beam theory, read as 
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After implementing the method of separation of variables on displacements, as presented in 
[14] , one reads: 

     ,w z t W z T t                                            (3) 

     ,u z t U z T t                                            (4) 

The axial, transverse force and the bending moment [14], using the method of separation of 
variables are respectively presented analytically by equations  
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Let us introduce a vector X(z) and a vector of derivatives of arguments  of X(z) and a matrix 
T(z) that connects them in the similarily to the one presented in [3] 
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Now, we may write a system of linear differential equations in matrix form as 

     X T X
d

z z z
dz

                       (11) 

Boundary conditions at the left end of the cantilever beam (z=0) shown in Figure 1 read 

 0 0U  ,  0 0W  ,  ' 0 0W 

  

   (12) 

Boundary conditions at the right end of the cantilever beam (z=L) shown in Figure 1 read 
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3.  Numerical procedure 
 

Similarly to the model presented in [3], based on the linearity of the presented system and the 
implementation of the method of initial parameters in differential form [15] one may write a 
solution as a sum of particular solutions as 

       1 2 3, , , ,1 2 3X X X Xz C z C z C z                                                         (16) 

Where, C1, C2 and C3 are integration constants, while vectors of particular solutions with 
respect to unknown natural frequency, as a symbolic variable, are defined as 

             ', , , , , , ,iX i i i

T
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Presented particular solutions shall satisfy the folowing boundary conditions 

   1 0, 0 0 0 1 0 0X
T                  (18) 

   2 0, 0 0 0 0 1 0X
T                  (19) 

   3 0, 0 0 0 0 0 1X
T                  (20) 

   
 

Constants C1, C2 and C3 are determined form the condition that solution (16) satisfies 
boundary conditions (13-15). In that manner, let us define expressions aji(ω), i,j=1,2,3 based on 
the boundary conditions (13-15) 
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1 , , ,i ai r i i ra F L m U L W L d         , i=1,2,3             (21) 

        2 '
2 , , ,i ti r i i ra F L m W L W L e         , i=1,2,3             (22) 

         2 '
3 , L, L, L,i fi Cr i ai r ti ra M L J W F d F e          , i=1,2,3             (23) 
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Thus, we obtain a system of linear equations as one may read 
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The latter system of equations will have nontrivial solutions if 
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Using numerical procedures natural frequencies may be obtained by solving the equation 
(25), as it is explained in [3]. Constants C1, C2 and C3 are not uniquely determined and it is not in 
the scope of this paper. 

 
4. Numerical Example 
 

The example for numerical calculations is based on the AFG cantilever beam with an 
eccentrically displaced mass as in Figure 1. The beam’s characteristics are taken as in a paper 
published by Nikolic in [1]. 

The results presented in Table 1 correspond to those from Table 5 in [1]. 
Natural frequencies are presented in non-dimensional form computed by the expression  

2 0 0

0 0

i i
x

A
L

E I

          (26) 

Natural frequencies of a cantilever beam with a tip mass are determined for material, cross-
sectional characteristics, length of a beam and various values of a tip mass as defined in the Case 
3 of [1] 
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2
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L=1m.  
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Results of exact solutions of non-dimensional natural frequencies obtained by the presented 
method are presented in Table 1. These results correspond to approximate solutions  obtained by 
the discretization of the beam in [1]. 

 
m0 ex/L ey/L 𝜔ଵതതതത 𝜔ଶതതതത 𝜔ଷതതതത 

0.5 

0 0 1.77924 16.31864 53.67654 
0.05 1.77588 15.63776 44.02430 
0.1 1.76583 13.80094 33.71129 
0.5 1.48856 5.06105 25.07258 

0.05 0 1.68764 14.17096 43.90148 
0.05 1.68463 13.69108 39.59564 
0.1 1.67565 12.43438 33.55737 
0.5 1.42882 5.18285 25.24057 

0.1 0 1.59647 11.93163 36.13141 
0.05 1.59381 11.64142 34.73042 
0.1 1.58586 10.87365 32.04515 
0.5 1.36782 5.25911 25.41614 

0.5 0 1.01764 5.84198 27.58303 
0.05 1.01680 5.82958 27.55965 
0.1 1.01430 5.79308 27.49181 
0.5 0.94204 5.00015 26.28668 

1 

0 0 1.36739 15.67383 51.89784 
0.05 1.36427 14.51755 36.39552 
0.1 1.35495 11.80404 28.46110 
0.5 1.10859 3.83966 23.80774 

0.05 0 1.28435 13.23746 40.48897 
0.05 1.28163 12.48766 34.28830 
0.1 1.27352 10.73735 28.96219 
0.5 1.05915 3.96814 23.90551 

0.1 0 1.20390 10.69414 32.42530 
0.05 1.20156 10.29798 30.83229 
0.1 1.19458 9.32437 28.37917 
0.5 1.00941 4.06588 24.01268 

0.5 0 0.73539 4.92549 25.73294 
0.05 0.73475 4.91250 25.71144 
0.1 0.73284 4.87441 25.64955 
0.5 0.67813 4.09147 24.66745 

Table 1. Calculated non-dimensional natural frequencies for Case 3 of [1] 
 
 
4.1 The influence of r0 and m0 to natural frequencies 
 

When solving system of ODEs (11), we introduce symbolic variables r0 and m0 and modify 
boundary conditions to modify the system (21-23) with the following system of equations 

        2 '
1 0 0 0 0, , , , , , ,i ai r i i ra F L m U L W L d             , i=1,2,3            (28) 

        2 '
2 0 0 0 0, , , , , , ,i ti r i i ra F L m W L W L e             , i=1,2,3            (29) 
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         2 '
3 0 0 0 0 0, , , L, , L, , L, ,i fi Cr i ai r ti ra M L J W F d F e             

i=1,2,3         (30) 

The frequency equation is then a determinant as a function of two symbolic variables 

 
     
     
     

11 0 12 0 13 0

0 21 0 22 0 23 0

31 0 32 0 33 0

, , ,

, , , , 0

, , ,

a a a

h a a a

a a a

     
       

     
                                                     (31) 

 

Thus, we obtain a function of two symbolic variables, namely r0 and ω and using 
CountourPlot[] command a relation of natural frequency change to the mass density of the 
beginning constituent material may be observed, as presented in Figure 2. 

 
Fig. 2. The graphical correlation ω-r0  

 
Similarly to the previous case, we introduce parameters 𝑎௜௝(𝜔, 𝑚଴) as 

        2 '
1 0 0 0 0, , , , , , ,i ai r i i ra m F L m m U L m W L m d         , i=1,2,3           (32) 

        2 '
2 0 0 0 0, , , , , , ,i ti r i i ra m F L m m W L m W L m e         , i=1,2,3            (33) 

         2 '
3 0 0 0 0 0, , , L, , L, , L, ,i fi Cr i ai r ti ra m M L m J W m F m d F m e         , 

i=1,2,3            (34) 
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The frequency equation is then a determinant of two symbolic variables 
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Once again, we obtain a function of two symbolic variables, but now m0 and ω. By 
implementing the CountourPlot[] command a relation of natural frequency change to the mass of 
a tip body (𝑚 = 𝑚଴𝜌଴𝐴଴𝐿) may be observed, as presented in Figure 3. 

 

 
Fig. 3. The graphical correlation ω-m0  

 
 
Modern software tools enable us to easily discuss complex analytical problems. Symbolic 

computations allow us to discuss complex problems, as the case of vibration of AFG cantilever 
beams with the tip rigid body. Furthermore, parametric plot of a function of two variables give as 
a chance to discuss the relation between natural frequency of the cantilever beam and its material 
characteristics. As the results Figures 2 and 3 are obtained. Based on the graphs shown in 
presented figures, we observe that natural frequencies decrease as parameters r0 and m0 increases. 
This is what we could expect due to the nature of the discussed problem. It is notably to 
emphasize that the fourth natural frequency of the cantilever beam presented in the discussed 
problem decreases with the higher slope with the increase in m0 that may be observed from Figure 
3. This however is not so easy to depict from the data shown in Table 1. 

 
5. Conclusions 
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In this paper we have presented some possibilities of the modified symbolic-numeric method 
of initial parameters presented in [3] and used the method to solve problems of coupled axial and 
bending vibration of the AFG cantilever beam. The presented problem was discussed in [1] for 
the first time and we have confirmed results presented in [1] for the Case 3 of material and 
geometrical characteristic of the cantilever beam. The presented problem of vibration of axially 
functionally graded beams is described by the system of differential equation with variable 
parameters that depend on geometrical characteristics of the cantilever beam and its material 
properties that may vary along the longitudinal axes. The method, presented in [3] is expanded to 
solve the problem of coupled vibration of AFG cantilever beam.  First three natural frequencies of 
a cantilever beam with a tip mass eccentrically displaced are calculated. The influence of the tip 
mass to natural frequencies is discussed, as well as the influence of mass density of one of the 
constituent materials. By using the proposed method iterative procedures in computing of natural 
frequencies for the presented problem are avoided so the computations are significantly faster, 
also no discretization technique was used. This is enabled by the possibility to use modern 
computer tools, where variables are treated in the symbolic manner. 
 
 
Acknowledgment:  
 

This research was supported under Grant No. TR 35006 by the Ministry of 
Education, Science and Technological Development of Serbia. This support is gratefully 
acknowledged. 
 
 
References 
 
[1] Nikolić A., Free vibration analysis of a non-uniform axially functionally graded cantilever 

beam with a tip body, Arch Appl Mech, no. 87, pp. 1227–1241, 2017. 
 
[2] Obradović A., Šalinić S., Trifković D., Zorić N., Stokić Z., Free vibration of structures 

composed of rigid bodies and elastic beam segments, Journal of Sound and Vibration, no. 
347, pp. 126–138, 2015. 

 
[3] Šalinić S.,Obradović A., Tomović A., Free vibration analysis of axially functionally graded 

tapered, stepped, and continuously segmented rods and beams, Composites Part B, no. 150, 
pp. 135–143, 2018. 

 
[4] Kokanee A., Review on Functionally Graded Materials and various theories, International 

Research Journal of Engineering and Technology (IRJET), vol. 04, no. 09, pp. 890-893, 
September 2017. 

 
[5] Oxman N., Variable property rapid prototyping, Virtual and Physical Prototyping, 2011. 
 
[6] Spillane D., Meisel N.A. Kaweesa D., Investigating the Impact of Functionally Graded 

Materials on Fatigue Life of Material Jetted Specimens, Solid Freeform Fabrication 
Symposium, Austin, Texas, 2017. 

 
[7] Lu Y., Engeberg E.D., Choi J-W. Vatani M., Combined 3D Printing Technologies and 

Material for Fabrication of Tactile Sensors, International Journal of Precision Engineering 
and Manufacturing, vol. 16, no. 7, pp. 1375-1383, 2015. 

 



A. Tomović, S. Šalinić, A. Obradović, M. Lazarević, Z. Mitrović: The exact natural frequency solution of a free axial-  
bending vibration problem of a non-uniform AFG cantilever beam with a tip body  
 

10 

[8] Pei E., et.al. A Study of 4D Printing and Functionally Graded Additive Manufacturing,  
Assembly Automation, vol. 37, no. 2, pp. 1-13, 2017. 

 
[9] Bhavar V., Kattire P., Thakare S., Patil S., Singh RKP., A Review on Functionally Gradient 

Materials (FGMs) and Their Applications, 4th International Conference on Mechanics and 
Mechatronics Research, 2017, pp. 1-9. 

 
[10] Drenchev L., Sobczak J., Metal Based Functionally Graded Materials. Bentham Science 

Publishers Ltd., 2009 
. 
[11] Brahimi F. (Editor), Advances in Functionally Graded Materials and Structures. ExLi4EvA, 

2016. 
 
[12] Akinlabi E. T. Mahamood R.M., Functionally Graded Materials, Springer, 2017. 
 
[13] Tomović A., A Novel Approach to the Free Axial-Bending Vibration Problem of 

Inhomogeneous Elastic Beams With Variable Cross-Sectional Profiles, The 6th International 
Congress of Serbian Society of Mechanics, Tara, 2017. 

 
[14] Rao S. S., Vibration of Continuous Systems. Hoboken, New Jersey: John Wiley & Sons inc., 

2007. 
 
[15] Biderman V.L., Theory of mechanical Vibration. USSR, Moscow: Vysshaya Shkola, 1980. 
 


