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Abstract 

This paper is written on the occasion of J.R. Rice’s 80th 

birthday. Basically, it presents two aspects of interface frac-

ture mechanics, linear elastic and elasto-plastic, both of them 

reflecting the long experience of the two authors. Special 

attention has been focused on the seminal contribution of 

Jim Rice, still being a great inspiration to researchers in 

the field of fracture mechanics. Fundamentals that he devel-

oped enabled us to build versatile scientific and engineering 

tools that currently enable the solution of almost any prob-

lem related to cracks. 

Ključne reči 

• mehanika loma interfejsa 

• bimaterijalno telo 

• J-integral 

• singularni konačni element 

Izvod 

Ovaj rad je napisan povodom 80-tog rođendana J.R. 

Rajsa. U njemu su suštinski predstavljena dva asepkta 

mehanike loma interfejsa - linearno elasitčni i elasto-plas-

tični, u kojima se odražava dugogodišnje iskustvo oba 

autora. Posebna pažnja je posvećena ključnim doprinosima 

Džima Rajsa, koji i dan-danas inspirišu istraživače koji 

rade na polju mehanike loma. Osnove koje je on razvio su 

dale temelj za igradnju naučnih i inženjerskih alata koji 

trenutno omogućavaju rešavanje skoro svih problema veza-

nih za prsline. 

INTRODUCTION 

Before discussing linear elastic interface fracture mechan-

ics, let us recall the initiation of fracture mechanics. In 

1921, Griffith /1/ wrote his ground breaking paper on frac-

ture mechanics in which he showed that the stresses in 

brittle material near a crack tip depend on the inverse 

square-root of the crack length. He estimated the theoretical 

strength of glass. Moreover, he presented his energetic 

criterion for crack propagation. The next major step took 

place after World War II with the development of the first 

term of the asymptotic expansion for the stresses and dis-

placements in the neighbourhood of a crack tip in a linear 

elastic, homogeneous and isotropic material /2, 3/. Modes 

of deformation, as well as the definition of the stress inten-

sity factors, KI, KII and KIII may be found in /4/. 

LINEAR ELASTIC INTERFACE FRACTURE 

The first paper on interface fracture mechanics appears 

shortly after /5/. The behaviour of the stresses and displace-

ments in the neighborhood of a crack tip for a crack along an 

interface between two dissimilar linear elastic, isotropic and 

homogeneous materials is found (see Fig. 1). It is seen that 

the stresses exhibit a square-root, oscillatory singularity at the 

crack tip. That is, the stresses oscillate ever faster while 

approaching infinity in a square-root sense as the crack tip is 

approached. It was shown that the oscillations occur very 

close to the crack tip. It was not noted, but it is predicted that 

the crack faces in the neighborhood of the crack tip inter-

penetrate which is not physically tenable. 

 

Figure 1. Crack tip coordinates 

Nonetheless, this work was followed by a series of papers. 

In /6/, the problem of an infinite body with several interface 

cracks and applied far field point loads was considered. The 

first term of the asymptotic expansion for the stresses was 

determined, as well as the stress intensity factors for two 

specific geometries. The oscillatory parameter was found as 
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k are the shear moduli; and k are the Poisson's ratios of 

the upper k = 1, and lower materials k = 2, respectively. It 

is also pointed out in /6/ that the oscillatory stresses are 

relegated to a very small region ahead of the crack tip. In 

/7/, the problem of an interface crack between two dissimi-

lar plates was considered by Sih and Rice. Again, a square-

root, oscillatory singularity was found for the stresses. 

Here, as well, the asymptotic expansion for the stresses is 

found. In an appendix, following up in /5, 6/, the first term 
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of the asymptotic expansion of the stresses is found for the 

in-plane problem. The in-plane problem is reconsidered by 

Rice and Sih /8/. Three problems are solved using the 

Kolosov-Muskhelishvili method to determine the Gourset 

functions. One is a semi-infinite interface crack subjected to 

point loads; the second is a finite length interface crack in 

an infinite body shown in Fig. 2; and the third is a periodic 

array of finite length interface cracks in an infinite body. 

Stress intensity factors k1 and k2 were found for each of the 

problems. Significantly, it was noted that these stress 

intensity factors no longer represent modes I and II defor-

mations. The deformation is now coupled. In an appendix, 

for the infinite body shown in Fig. 2, it is found that hori-

zontal stresses must be applied for x1 → , so that the 

displacements will be continuous across the interface. The 

normal stress in the lower material 11
(2) is found as 
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where the normal stress in material 1, 11
(1), is chosen arbi-

trarily; and x2 is the far field applied stress in the - 

direction; the Young's moduli are defined as 
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where: k = 1, 2 represents the upper and lower materials, 

respectively; and Ek are the Young's moduli of the upper 

and lower materials, respectively. 

  

Figure 2. Infinite bimaterial body with a finite length crack, 

subjected to remote tension and shear. 

In /9/, a problem was solved of a crack of finite length 

a2 along an interface between two half-spaces of dissimilar 

material shown in Fig. 2, where the crack was subjected to 

constant opening pressure. It was found again that the stress 

oscillations were confined to a small distance from the 

crack tip. Moreover, it was shown that there is crack face 

interpenetration also confined to a small region which was 

estimated to be a maximum of 0(10-4) of the crack length 

2a. It was noted that this is sufficiently small and may be 

neglected so that the solution to such problems may be 

considered as a good approximation to the physical problem. 

The effect of shear loading was mentioned in passing to 

also have small interpenetration zones. This will be seen not 

to be the case. Several different interface crack problems are 

considered in /10/. Again it is shown for applied tensile 

loading that the stress oscillations begin very close to the 

crack tip. Moreover, for an interface crack between glass 

and steel with tensile loading, crack face interpenetration 

begins at a distance of 10–7a, where a is the half crack length. 

Again it was shown in /11/ that oscillations of the stresses 

on the interface ahead of the crack tip are in a small region 

and the interpenetration of the crack face is also in a small 

region. All authors that have addressed this issue have not 

considered the application of shear stresses. In that paper, it 

was pointed out, that instead of interpenetration, a contact 

zone would occur. The authors also bring to our attention a 

paper by Cherepanov /12/ published in 1962 in Russian, 

where the Gourset functions were determined showing the 

oscillatory behaviour. For the first time, the interface energy 

release rate is related to the stress intensity factors by /11/: 
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where:  is given in Eq.(1); kE is given in Eq.(4); and A0 

and B0 are the modes 1 and 2 stress intensity factors, in 

respect. These stress intensity factors differ by a factor from 

k1 and k2 given in /8/. 

It would appear that as a result of the oscillations of the 

stresses in the neighborhood of the crack tip and the inter-

penetration of the crack faces that interest was lost in explor-

ing the behaviour of interface cracks. In 1971, two papers 

appeared in which a crack in an interlayer between two 

semi-infinite half-planes was investigated /13, 14/. The first 

finite element solution for an interface crack was presented 

in 1976 /15/ using a special crack tip element and a hybrid 

method. The stress oscillations were mentioned, but crack 

face interpenetration was not. 

Next, Comninou took another approach in a series of 

three papers /16-18/. In /16/, the bimaterial problem of an 

infinite body containing a finite length crack along the 

interface shown in Fig. 2 and subjected to far field tension 

was considered. It was assumed that two contact zones exist 

at each end of the crack. The length of the contact zones 

were found as part of the solution to the problem to be 

between 10–7a and 10–4a, where a is the half-crack length. 

The contact zone was shown to be smaller than the inter-

penetration zone. For pure applied far field shear stresses 

/17/, it was seen that the contact zone on one side of the 

crack was smaller than that for applied tension, whereas the 

contact zone on the other side of the crack was approxi-

mately two-thirds of the half-crack length. The side at 

which the large contact zone occurs depends on the mechan-

ical properties of the materials on either side of the inter-

face, as well as the direction of the shear stress. The small 

contact zone is larger than the interpenetration zone. In /18/, 

combined applied tension-compression and shear stresses 

were considered. Interestingly, when compression is applied, 

part of the crack remains open. 

Use of the approach developed by Comninou for other 

geometries would be difficult. Instead, in 1988, Rice /19/ 

returns to the problem of an interface crack giving guidance 

on how the problem should be approached, allowing for 
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zones of crack face interpenetration. In that paper, methods 

of Muskhelishvili are used to obtain the potential functions 

for the interface crack. The tractions along the interface 

were found to be: 
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where: 1−=i ; the crack tip polar coordinates r and  are 

illustrated in Fig. 1; the complex stress intensity factor may 

be written as: 

 21 iKKK += , (7) 

where: K1 and K2 are real and are the modes 1 and 2 

stress intensity factors; and the oscillatory parameter  is 

given in Eq.(1). It may be noted that in /19/, the subscripts I 

and II are used instead of 1 and 2. Below, this choice will 

be elaborated. Moreover, the complex stress intensity factor 

defined in /7, 8/ is related to that in Eq.(7) by: 
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and those defined in Eq.(5) are related as 
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the subscript i = 1, 2 represents the coordinate directions in 

Fig. 1; and the superscript k = 1, 2 represents the upper and 

lower materials, respectively. Using Eqs.(6) and (10) in the 

Irwin crack closure integral /3, 4/, the interface energy 

release rate is found as: 
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where: the subscript i represents interface. 

Substituting Eq.(9) into Eq.(12) reproduces Eq.(5). 

As an example, the stress intensity factor for a finite 

length interface crack between two semi-infinite half-spaces 

subjected to far field uniform tension 22
 and shear 21

 

stresses, as shown in Fig. 2, is given by: 
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Note that the far field normal stress in the x1 direction in 

Eq.(3) is applied. 

Rice goes on in /19/ to elucidate the validity of the first 

term of the asymptotic expansion for the stresses and dis-

placements by the argument that if the region of crack face 

interpenetration is sufficiently small as to be enclosed in a 

small scale nonlinear zone, the K solution is valid in an 

annular region outside this zone and governs the behaviour 

of the crack. To this end, this region was estimated by deter-

mining the value of r for which u2 = 0. The applied far 

field stress for the problem shown in Fig. 2 may be written as 
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where: T is the magnitude of the traction vector; and the 

phase angle  gives its direction. Setting u2 = 0 in Eq.(10), 

leads to: 

 















+=

2

1
-exp2





arc , (15) 

for the radius in which there is K - dominance for  > 0. If 

 < 0 the labels for the upper and lower materials are ex-

changed and  is replaced by –. Since  << 1, rc/2a is 

much smaller than unity, at least for –/4 <  < /2. 

In general,  increases with the ratio 2/1. As an example, 

taking material 1 as cork with 1  0 and bonding it to a 

stiff material so that 1/2  0, then the largest value of  in 

Eq.(1) is 0.175. Example values of  are given: for SiO2 as 

the upper material and Al2O3 as lower material  = 0.075; 

for Si and Cu as upper and lower materials,  = 0.011. 

Other examples are given in /19/. 

If one wishes to duplicate the crack tip conditions for 

two bodies with different crack lengths, one must apply 

different loading conditions to each body. If the crack 

length is 2a in one body shown in Fig. 2, and  = 0 in 

Eq.(14) so that only tensile loading is applied, then a crack 

of length 2a′ requires a combination of tensile and shear 

loading to obtain the same K field. This means that it is not 

possible to separate opening and in-plane sliding modes. 

This is different from cracks in homogeneous materials 

where the modes I and II stress intensity factors are written 

as KI and KII, representing opening and in-plane sliding 

deformation. 

It is shown that if the crack length is changed from 2a to 

2a’ for the problem in Fig. 2, the traction in eq. (14) must 

be changed as: 

 
'a

a
T'T = , (16) 

as is the case for homogeneous material. But the phase angle 

of the loading must also be altered as: 
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Thus, the ratio between the stress intensity factor changes 

which does not occur in homogeneous material where the 

ratio of KI and KII remains fixed. The phase angle change 

 ′ –  is generally small since  is small. For  = 0.175, its 

maximum value, and a′/a = 100,  ′ –  = 46°. However, 

for  = 0.011, for Si/Cu,  ′ –  = 2.9°. 

The unit of the complex stress intensity factor in meters is 

 ( ) i−
mmMPa . (18) 

Changing from meters to millimetres changes the ratio of 

the stress intensity factors K2/K1. Thus, opening and sliding 

deformation of the crack are inherently coupled. Applied 

loads cannot be unambiguously connected with mode I and 

mode II deformation. 

It was suggested to normalize the units of the complex 

stress intensity factor by multiplying it by some length 

parameter raised to the power i, that is: 

 
i

III L̂KK̂iK̂K̂ =+= , (19) 
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where K is given in Eq.(7). The length parameter L̂  remains 

to be defined. But in Eq.(19), the stress intensity factor K̂  

has the usual units of stress intensity factors. It was sug-

gested as a possibility to choose L̂  as a characteristic length 

of the fracture process zone in a specific test. This parame-

ter should be a constant and not related to a changing crack 

length. It may be noted that one of the authors has used L̂  

to correlate failure data and a failure curve; see reference 

/20/ as an example. 

For small scale yielding in which one or both solids 

deform plastically, the dimensions of the plastic zone 

depends on the complex stress intensity factor K and mate-

rial properties. These properties depend on the yield stress 

0 of the weaker solid, the ratio of the yield stresses and 

dimensionless properties describing strain hardening and 

ratios of elastic constants. See /19/ for a dimensional analy-

sis of the plastic zone size. 

An additional square-root singularity was found and 

discussed in /19, 21/. In /21/, the in-plane stresses were 

written as: 
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where: ,  = 1, 2;   and   represent the real and imagi-

nary parts of the quantity in parenthesis; K is the complex 

stress intensity factor in Eq.(7); r and  are the crack tip 

polar coordinates shown in Fig. 1; and (j)
 , where j = 1, 2, 

is a well behaved function of the oscillatory parameter  

and the crack tip polar coordinate . In addition, for out-of-

plane deformation 
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where: KIII is the mode III stress intensity factor which is 

the amplitude of a square-root singularity. The existence of 

a square-root singularity was mentioned in /19/. The func-

tions (j)
 , j = 1, 2, are presented in /21/ where the coordi-

nate directions are in polar coordinates. The functions (j)
 , 

j = 1, 2, and )(III
  are presented in /22/, where the coordi-

nate directions are in Cartesian coordinates. Of course, 

these functions differ for the upper and lower materials. 

The phase angle in Eq.(17) is redefined in /21/ as the 

phase angle of the stress intensity factor which may be 

written as: 
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where: L is a length parameter. A change in the length 

parameter from LA to LB translates the value of the phase 

angle as: 
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The problem of an interface crack between two dissimi-

lar anisotropic materials was also discussed in /21/. It was 

pointed out that it is possible that the square-root, oscilla-

tory singularity is related to the in-plane deformation as 

shown in Eq.(7) and that the out-of-plane deformation is 

related to the square-root singularity. But it is also possible 

that the shear deformation, both in-plane and out-of-plane 

are coupled with a complex stress intensity factor given by: 

 32 iKKK += , (24) 

being the amplitude of the square-root, oscillatory singular-

ity, and KI being the amplitude of the square-root singular-

ity. In fact, it has been shown /23/ that there can be three 

stress intensity factors which are the amplitude of the square-

root singularity and three stress intensity factors related to 

the square-root, oscillatory singularity. 

A failure criterion was proposed based on cG  as a func-

tion of the phase angle  for a given value of L. This failure 

criterion is a fracture toughness locus of the interface where 

the subscript c denotes critical. That paper goes on to discuss 

the competition between interface cleavage and dislocation 

emission. 

Finally, with papers /19/ and /21/, Rice's contribution 

was seminal to the reinvigoration of the subject of interface 

fracture mechanics which motivated the publication of 

hundreds of papers on the subject. 

ELASTO-PLASTIC INTERFACE FRACTURE MECHANICS 

The J-integral has been used extensively as a fracture 

mechanics parameter for more than 50 years, ever since it 

was defined by Rice in 1968, /24/, as a conservation law for 

a two-dimensional (2D) cracked body. It was proved by 

Rice /24/ that the J-integral is path independent, it can be 

identified with crack driving force, and it describes the 

stress and strain fields around crack /25, 26/. As stated in 

the Rice’s original paper, the J-integral is valid for two-

dimensional plane (nonlinear) elasticity in the absence of 

body and thermal forces, and for the homogeneous mate-

rial, at least in crack direction. Of course, there are no trac-

tions on the crack faces. Its application beyond these limita-

tions has been questionable, but still successful, e.g. for 

elasto-plastic fracture mechanics without any modifications 

of the original expression /27/. In some other cases, modi-

fied J-integrals were introduced to compensate for missing 

path independence, e.g. for elasto-dynamics, /28/ and for a 

2D curved body, /29-31/. Besides the original paper by Rice 

/24/, several later contributions should be mentioned /32-34/. 

Here, one of the limitations of the original definition of 

J-integral is expanded upon and described here in more 

detail. It has been the focus of the second author for more 

than 30 years /35-37/. It is the problem of weldment hetero-

geneity, represented as a multibody with interfaces between 

regions with different properties /35-39/. As follows from 

the original definition, the J-integral is not path independent 

for a generally shaped weldment. But its path independence 

may be recovered if a modified J-integral is introduced, 

comprising the original J-integral and line integrals along 

weldment interfaces /38-39/. Towards this end, we present 

here the modified J-integral for a multi-material body, repre-

senting a welded joint with four different material regions 

(base metal - BM, weld metal - WM, coarse grain heat 

affected zone - CGHAZ and fine grain heat affected zone - 

FGHAZ), including the results presented in /35-37/. 
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The modified J-integral for a weldment 

The modified J-integral for a weldment will be introduced 

as for a multi-material body, represented by four regions of 

different material properties as shown in Fig. 3: BM, WM 

and two regions in HAZ - one with fine grained structure 

(FG) and the other one with coarse grained structure (CG). 

Such a representation follows the uneven strain distribution 

along a weldment, with two extremes in HAZ, as shown in 

/35-37/. This is also in accordance with the well-known 

structural heterogeneity of HAZ: fine grain normalized 

region and coarse grain overheated region. 

 

Figure 3. Integration paths for weldment, /35/. 

The J-integral may be evaluated along a path 1 encom-

passing the crack and not crossing the interface: 
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where: W denotes the strain energy density; nj is the unit 

outward normal to 1; ij is the stress tensor; ui is the 

displacement vector; xi are Cartesian coordinates (x1 is 

along crack); and G is the energy release rate or crack driv-

ing force. For six closed paths, 2-7 as shown in Fig. 3, the 

crack driving force G = 0, so that 

 
i

1 j 1

a

u
Wn n ds 0, a 2,3,4,5,6,7

x

ij



 
− = = 

  
 . (26) 

The J-integral along paths 2-7 reduces to zero because 

these paths do not encompass any discontinuities. Using 

Eqs.(25) and (26) one can write: 
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l

J  
=

    
= − − −   

       
  , (27) 

where: la, a = 1…6, denote the closed contour along mate-

rial interfaces. All of the paths along the interfaces, la, 

comprise parts of a, a = 2…7, e.g., l3, comprises those 

parts of 3 and 4, which are along the interface between 

BM and FG HAZ, Fig. 3.Once all pieces are put together, 

the expression in Eq.(27) follows, defining the modified J-

integral for a weldment, represented by four regions with 

different material properties. The modified J-integral is path 

independent, as shown in /35-37/. It has the following physi-

cal meaning: the first integral represents the force acting on 

both the crack tip and material interfaces (discontinuities of 

stress and strain), whereas the second one eliminates the 

force on the boundaries. Thus, the complete integral expres-

sion represents only the force acting on the crack tip, and 

can be identified with the energy release rate due to a unit 

crack growth. 

Numerical procedure - historical retrospective and application 

Numerical analysis of elasto-plastic material behaviour 

is performed using collapsed isoparametric eight-noded 

elements around the crack tip, producing a r–1 singularity. It 

should be noted that singular elements are one of three 

important contributions of JRR (this list is not complete, but 

just focused on topics covered here), the other two being the 

J-integral itself and the HRR fields /24-27/ as described in 

/40/. Therefore, it is natural to quote here several statements 

form the brilliant paper, written by Rice and Tracey in the 

early seventies /41/. (Note: original reference numbers are 

retained in parentheses and these papers are referenced here 

in the next paragraph, using different numbers): ‘Three 

types of finite elements were used in the analysis. For 

elastic solutions the r–1/2 singular element (ref. 25) was used 

nearest the crack tip with arbitrary quadrilateral 4-noded 

isoparametric elements over the remainder of the 

configuration. To study plastic effects at the crack tip, a 

new singular element was designed, similar to that of Levy 

et al. (ref 37), which has a 1/r shear strain singularity (with 

a bounded dilatational strain) and a uniform strain as 

admissible deformations. The singular elements have the 

shape of isosceles triangles and are focused along radial 

lines at the crack tip. However, they are treated as degenerate 

isosceles trapezoids in the sense that four nodes are assigned 

to the elements, one at each vertex, even though two of the 

nodes coincide at the crack tip. Levy et al. (37) introduced 

this coincident node technique to study the crack tip 

displacement variation. Contrary to their procedure, how-

ever, the coincident nodes were here constrained to move as 

a single point in obtaining the elastic response of the 

cracked body, since the non-unique crack tip displacement 

is a plasticity effect. The variation of stress and hence the 

constitutive relation in the plastic case within elements was 

accounted for in the following approximate manner. Each 

near-tip element was viewed as the composite of three sub-

elements, each extending one-third of the height of the 

element. The area average strain of an individual sub-

element was used in evaluating the stress state and constitu-

tive matrix representative of the sub-element. The three 

sub-element stiffnesses were then formed and added to 

obtain the total element stiffness matrix. For the adjoining 

isoparametric elements, the midpoint strain was judged 

adequate to calculate the stress representative of the entire 

element. To obtain elasto-plastic solutions, the procedure 

was to specify the r–1/2 element just up to the load necessary 

to yield one of the sub-elements. Thereupon, the r–1 element 

was used with its associated nonunique crack tip displace-

ment capability. Clearly, the elastic singularity implies yield-

ing under infinitesimal load so that there is some error 

involved in the plastic solution by specifying the r–1/2 near 

tip strain distribution up to finite loads. Actually, for the 

element size used at the tip, this error should be very small.’ 

Let us keep in mind the fact that all necessary equations 

for both linear elastic and elasto-plastic elements were pro-

vided, including relevant examples, in /41-43/, establishing 

a computational fracture mechanics framework already in 

1973. In addition, let us recall that just two years later, 

McMeeking and Rice (1975) /44/ have shown that triangular 
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or prismatic collapsed 8- or 20-noded elements, respectively, 

with a 1/r singularity, are well suited for elasto-plastic 2D 

and 3D calculations, also used here. Having in mind also 

the pioneering work in the mechanics of crack tip defor-

mation and extension by fatigue /45/, it seems that we are 

still just recycling efforts and results provided by James 

Rice in the late sixties and early seventies. 

 

Figure 4. Singular crack tip element, as introduced in /42/. 

 

 

 

Results 

In order to check the influence of weldment heterogene-

ity on the J-integral value obtained by direct measurement 

on the surface of a cracked tensile panel, its cross-section 

through the maximum crack depth was analysed by the 

finite element method, using a mesh consisting of 297 8t-

noded elements and 822 nodes, including singular elements 

at the crack tip, as shown in Fig. 5a. Both integral terms in 

Eq.(27) were numerically evaluated on different paths (J1-

J3) shown in Fig. 5. All other data is given in /35-37/, includ-

ing mechanical properties (yield stress Reh and hardening 

coefficient H') of weldment regions, which are used for bi-

material representation of stress-strain curves. 

The results are given in Table 1, showing the average 

value of the J-integral for six inner paths, JAVE, close to the 

crack tip and not intersecting material boundaries (each two 

paths crossing three rings of elements around the crack tip, 

paths 1& 2 – elements 8, 9, 12, 15, 18; paths 3 & 4 – 

elements 7, 10, 13, 16, 19; paths 5 & 6 – elements 6, 11, 14, 

17, 20; in Fig. 5b), the values of first integral term in the 

modified J-integral for the remote paths intersecting the 

material boundaries (J1, J2 and outer path J3 in Fig. 5a), and 

the values of the second integral term in the modified J-

integral along the boundaries between WM and CG HAZ 

(l1), between CG HAZ and FG HAZ (l3), and between FG 

HAZ and BM (l3). 

 

(a)

 

(b)

  
Crack tip 

 

(c)

  
 

Figure 5. Finite element mesh: (a) with details around the crack tip: mesh (b) and weldment zones (c). 
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Table 1. Results for J1-J6 integrals (inner paths through the weld metal). 

Remote load 

 (MPa) 

J1 

(N/mm) 

J2 

(N/mm) 

J3 

(N/mm) 

l1  

(N/mm) 

l2  

(N/mm) 

l3  

(N/mm) 

JAVE 

(N/mm) 

700 41.306 42.278 44.679 -0.790 0.341 -0.350 39.715 

710 72.604 71.227 79.238 -2.998 2.661 -1.039 68.318 

720 100.481 95.6042 106.957 -5.582 5.808 -4.167 92.567 

730 133.131 124.831 139.410 -8.226 9.081 -7.270 122.440 

740 160.795 149.400 166.615 -11.308 12.088 -10.070 148.362 

750 202.666 187.190 206.002 -16.322 16.497 -14.327 188.772 

760 223.504 205.236 225.386 -18.716 19.324 -17.222 209.220 

770 247.370 225.526 247.658 -21.401 23.043 -20.973 232.632 

 

As may be seen in Table 1, the finite element results 

confirm the theoretical analysis of the material interface 

effect on the J-integral value. Namely, the Rice’s J-integral 

is path dependent because its values for different paths 

differs only by the limits of numerical error. The largest 

difference (J1 and J2) is cca 9%, while the numerical error 

may be estimated to cca 2.5%, /35/. On the other hand, if 

values of the modified J-integral (defined by Eq.(27) and 

denoted here as JW), shown in Table 2, are obtained, one 

may observe excellent agreement between JW1, JW2 and JW3, 

as well as good agreement (within the limits of numerical 

error) between these values and JAVE. The relations between 

J1-J3 and l1-l3 with JW1-3 is as follows: 

JW1=J1+l1 ,  (28) 

JW2=J2+l1+l2 ,  (29) 

JW3=J3+l1+l2+l3 .        (30) 

Table 2. Results for the modified J integral. 

Remote load 

σ∞ (MPa) 

JAVE 

(N/mm) 

JW1 

(N/mm) 

JW2 

(N/mm) 

JW3 

(N/mm) 

700 39.715 40.516 41.829 44.580 

710 68.318 69.605 70.889 77.861 

720 92.567 94.899 95.830 103.016 

730 122.440 124.905 125.686 132.995 

740 148.362 149.486 150.180 157.324 

750 188.772 186.343 187.365 191.850 

760 209.220 204.787 205.844 208.772 

770 232.632 225.968 227.167 228.326 

From an engineering standpoint, the effect of weldment 

heterogeneity is neither significant nor negligible. One can 

see that the J-integral that corresponds to the directly meas-

ured value (path J3) is almost cca 8% higher than the real 

one (247.658 vs. 228.326). Having in mind the shape of 

weldment and differences in properties, one can hardly 

imagine a more critical situation when similar materials are 

welded. Anyhow, dissimilar materials (e.g. ferrite and 

martensite or austenite steels) would produce much larger 

differences between the J-integral for the outer contour and 

the modified J-integral. This is especially important if a 

directly measured J-integral is used as the J-R curve for the 

undermatched dissimilar weldments, because large over-

estimation can be obtained /46-50/. 

As a final note, it may be pointed out that the J-integral 

is more frequently calculated as an area integral which leads 

to more accurate results /51/. These analyses are further dis-

cussed in /52, 53/. More information on linear elastic frac-

ture mechanics of interface cracks may be found in /54/. 

Nonetheless, the line integrals were used because with area 

integrals path independency could have not been analysed 

in the way shown here. 
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