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This paper considers a passive target localization problem in Wireless Sensor Networks (WSNs) using the noisy time of arrival
(TOA) measurements, obtained from multiple receivers and a single transmitter. The objective function is formulated as a
maximum likelihood (ML) estimation problem under the Gaussian noise assumption. Consequently, the objective function of
the ML estimator is a highly nonlinear and nonconvex function, where conventional optimization methods are not suitable for
this type of problem. Hence, an improved algorithm based on the hybridization of an adaptive differential evolution (ADE) and
Nelder-Mead (NM) algorithms, named HADENM, is proposed to find the estimated position of a passive target. In this paper,
the control parameters of the ADE algorithm are adaptively updated during the evolution process. In addition, an adaptive
adjustment parameter is designed to provide a balance between the global exploration and the local exploitation abilities.
Furthermore, the exploitation is strengthened using the NM method by improving the accuracy of the best solution obtained
from the ADE algorithm. Statistical analysis has been conducted, to evaluate the benefits of the proposed modifications on the
optimization performance of the HADENM algorithm. The comparison results between HADENM algorithm and its versions
indicate that the modifications proposed in this paper can improve the overall optimization performance. Furthermore, the
simulation shows that the proposed HADENM algorithm can attain the Cramer-Rao lower bound (CRLB) and outperforms the
constrained weighted least squares (CWLS) and differential evolution (DE) algorithms. The obtained results demonstrate the
high accuracy and robustness of the proposed algorithm for solving the passive target localization problem for a wide range of
measurement noise levels.

1. Introduction

Determining the position of a passive target using time of
arrival (TOA) measurements has become an important issue
for a number of different applications, such as radar, sonar,
telecommunications, mobile communications, and naviga-
tion [1, 2]. In general, localization systems can be classified
into active and passive [1]. With the active localization sys-
tem, the target actively participates in the localization pro-
cess. Compared to the active case, in passive localization,
the target is not involved in the localization process and can
only reflect or scatter the signals from the transmitter to
receivers [2]. Therefore, the passive localization has been
widely applied to different fields, such as robots, underwater
acoustics, radar, crime-prevention, surveillance, and urban
environments [3, 4].

Hence, this paper proposes a passive target localization
problem using noisy TOA measurements. In this way, the
signal propagation time from the transmitter via the target
to the receiver can be measured and used to determine range
measurements, e.g., transmitter-target-receiver distances.
Due to the nonlinear relationship between the target position
and measurements, various efficient estimation methods
have been proposed, such as nonlinear least squares (NLS)
and maximum likelihood (ML) [5]. To obtain a closed-
form solution, the NLS problem has been linearized using
the linear least squares (LLS) and the weighted least squares
(WLS) algorithms [6, 7]. In order to improve the accuracy,
especially in the case of high measurement noise, the con-
strained weighted least squares (CWLS) is introduced [8].
Hence, the CWLS problem can be formulated as a quadrati-
cally constrained quadratic program (QCQP), which is
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converted to an unconstrained optimization problem using
the method of Lagrange multipliers [8]. Another widely used
estimation method is the ML estimator, which is commonly
applied when the measurement error distribution is previ-
ously known [2]. In general, the ML objective function is
highly nonlinear, with multiple local optima, and thus, the
solution in closed-form cannot be obtained. Therefore, find-
ing the global optimal solution by conventional optimiza-
tion methods is difficult, due to the multimodal objective
function [9]. For this reason, various efficient optimization
algorithms have been derived to overcome these types of dif-
ficulties and to answer the challenges of complex optimiza-
tion problems [10].

Motivated by these facts, this paper proposes evolution-
ary algorithms (EAs) and their hybrid variants to overcome
these drawbacks and improve the localization performance
[11]. Generally, the optimization process of EAs consists of
two phases, namely, exploration and exploitation [10]. In
such a context, the first phase consists of exploring the
search space and locating the region of the global opti-
mum, while the exploitation phase investigates the promis-
ing area to refine the solution around the current global
best solution. Therefore, finding an appropriate balance
between the exploration and exploitation abilities during
the evolution process is a significant challenge for optimi-
zation algorithms.

Various EAs have been successfully applied to solve dif-
ferent complex optimization problems, such as the particle
swarm optimization (PSO) [9], the differential evolution
(DE) [12], the artificial bee colony (ABC) [13], and the
cuckoo search algorithm (CS) [14]. Among these algorithms,
the DE has emerged as a very efficient and robust EA for
global optimization with successful applications in finding a
global optimum [15].

The DE is a population-based EA, which has been
widely used to solve numerous optimization problems in
different fields of science and engineering [15, 16]. Easy
implementation, compact structure, reliability, and robust-
ness are the main advantages of the DE algorithm [15].
However, some difficulties occur, such as a weak local search
and slow convergence [17]. In general, the main factors that
affect the performance are mutation and crossover operators
and their corresponding control parameters, such as the
scale factor (F), crossover rate (CR), and population size
(NP). In this direction, various empirical guidelines have
been provided for selecting the most suitable values for con-
trol parameters such as F ∈ ½0:4, 1� and CR ∈ ½0, 1� [18]. To
obtain acceptable results for a given problem, different con-
trol parameter values at different stages of the evolution
process are needed. In this way, a large F is required at
the early stage of the evolution process for the purpose of
preventing premature convergence, while a smaller F is pre-
ferred to accelerate the convergence at the later stage of the
evolution process [19]. A large value of CR in the early stage
of evolution can increase the population diversity. On the
contrary, a smaller CR can improve the local exploitation
ability and convergence at the later stage of evolution [19].
In this regard, different adaptive mechanisms eliminate the
need for manual tuning of control parameters, which are

adjusted adaptively using the feedback from the evolution
process [20, 21].

Furthermore, choosing the appropriate mutation opera-
tor can significantly affect the optimization performance of
the DE algorithm. In this way, a number of different muta-
tion operators have been developed, such as DE/rand/1,
DE/rand/2, DE/best/1, DE/best/2, DE/current-to-best/1,
DE/current-to-rand/1, and different variants of them [15].
The DE/rand/1 and DE/rand/2 generally have powerful
global exploration ability, while the DE/best/1 and DE/cur-
rent-to-best/1 have strong local exploitation ability [20].

Hybridization of DE with other algorithms is another
way to overcome the drawbacks of both algorithms and
further enhance the optimization performance. Depending
on the type of algorithm, the DE can be hybridized with
other EAs, such as ABC, CS, and PSO [13, 22] or with dif-
ferent local search methods such as Powell’s method, the
Hook-Jeeves (HJ), and the Nelder-Mead (NM) [23–25].
Among them, the NM method has been chosen, due to
its excellent local search ability. However, the convergence
of the NM method is extremely sensitive to the choice of
the initial point [25], and thus, it cannot be used alone
to find the global optimum of a multimodal objective
function.

Based on the above considerations, this paper is aimed at
proposing an improvedHADENMalgorithm, in order to effi-
ciently find the estimated position of a passive target. The
proposed algorithm is a two-stage method, where in the first
stage, the adaptive differential evolution (ADE) algorithm is
used as the global optimizer, to quickly locate the promising
region containing the global optimum. Then, in the second
stage, the NM method is employed to improve the accuracy
of the best solution obtained from the ADE algorithm. More-
over, an adaptive adjustment parameter is introduced in the
mutation phase of the ADE algorithm to automatically apply
the appropriate mutation operator, in order to avoid the
problem of stagnation and premature convergence. In addi-
tion, to further improve the optimization performance, the
control parameters of the ADE algorithm are automatically
and adaptively adjusted during the evolution process. There-
fore, the purpose of this paper is to propose a robust optimi-
zation algorithm for the passive target localization problem
for a wide range of measurement noise levels.

Finally, the Cramer-Rao lower bound (CRLB), which
provides a lower bound on the variance of any unbiased
estimator, has been derived and used as a benchmark to
evaluate the localization performance [26]. Hence, the
CRLB for the passive target localization problem is com-
pared with the root mean square error (RMSE) perfor-
mance of the proposed HADENM algorithm and the
existing CWLS and DE algorithms.

The contributions of this paper are summarized as
follows:

(i) The passive target localization problem in LOS (line-
of-sight) environment is formulated using the TOA
measurements obtained from a set of receivers and
a single transmitter, in Wireless Sensor Networks
(WSNs)
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(ii) An improved HADENM algorithm, as the hybridi-
zation of the ADE and NM algorithms, is proposed
in order to efficiently solve the passive target locali-
zation problem. Furthermore, the scale factor and
the crossover rate are updated using an adaptive
strategy. In addition, an adaptive mutation operator
has been designed in order to maintain a balance
between the exploration and exploitation. To further
increase the exploitation ability, the NM method is
employed with the aim to enhance the accuracy of
the best solution previously obtained by the ADE
algorithm

(iii) The experiments are carried out to evaluate the
benefits of the proposed modifications on the opti-
mization performance of the proposed HADENM
algorithm. Based on the statistical analysis of the
proposed algorithm and its versions, it can be con-
cluded that the modifications proposed in this paper
can improve the overall optimization performance.
Furthermore, the simulation results show the effec-
tiveness of the HADENM algorithm for a wide range
of measurement noise levels compared to the CWLS
and DE algorithms. Additionally, the proposed algo-
rithm attains the CRLB accuracy and shows better
robustness against variations in network topology

The structure of the rest of the paper is organized as fol-
lows. Section 2 presents a review of background and related
work. In Section 3, the passive target localization problem
using noisy TOA measurements is presented. Section 4 gives
the derivation of the ML objective function for the passive
target localization problem. In Section 5, the CWLS algo-
rithm is described. Section 6 introduces the DE algorithm
followed by corresponding modifications. A local search
NM method is described in Section 7. In Section 8, the
HADENM algorithm is introduced to solve the consid-
ered passive target localization problem. In Section 9,
the derivation of the CRLB is developed. To evaluate
the localization accuracy, experimental results are pre-
sented in Section 10. The conclusion and future work
are given in Section 11.

2. Background and Related Work

Highly accurate passive target localization can be consid-
ered as one of the most significant and challenging issues
in WSNs [26]. The accuracy of the estimated target posi-
tion depends on the geometric configuration of sensors
and the measurement accuracy [1]. The localization algo-
rithms in WSNs can be divided into range-based and
range-free [5]. Range-based algorithms use range measure-
ments including distance or angle between the target and
the receivers, such as TOA [26], time difference of arrival
(TDOA) [8], received signal strength (RSS) [27], angle of
arrival (AOA) [28], or a combination of them [29].
Among them, TOA is the most commonly used algorithm
for solving the localization problems, which can achieve
high localization accuracy [26]. On the contrary, the

range-free algorithms do not measure the distance or
angle information; these algorithms use connectivity
information in WSNs to estimate sensor positions [30].
Compared with range-based algorithms, the range-free
algorithms do not require complex hardware structure.
Hence, the range-free algorithms are cost effective and easy
to implement; however, they are less accurate in estimating
the sensor position [30].

There are many applications, in which global posi-
tioning system (GPS) or other navigation systems cannot
be used, such as in indoor, underwater acoustics, and
urban environments [31]. In these cases, when GPS sig-
nals are not available or do not have sufficient accuracy,
the passive localization system can be employed as an
efficient alternative. In this regard, the passive target
localization system has become an attractive solution for
determining the unknown position of the passive target
under various circumstances and environments [32]. In
this way, a novel two-step algorithm for TOA passive tar-
get localization has been proposed for synchronous net-
works [26]. Furthermore, the two new algorithms based
on belief propagation on a factor graph have been devel-
oped to localize multiple passive targets, in the case
where the receiver position errors exist [2]. In addition,
the two-step linear algorithm has been proposed to
simultaneously estimate the position of the passive target
and the unknown time offset in a quasisynchronous net-
work using TOA measurements [33].

Numerous estimation methods have been proposed to
find the position of a target, where the well-known NLS
estimation method is commonly employed. To obtain a
closed-form solution, the LLS and WLS [6, 7] methods
have been widely applied and implemented. However,
these linear estimation methods cannot provide high local-
ization accuracy of the target for different measurement
noise levels [34]. To further improve the localization per-
formance, especially in the presence of high noise levels,
the CWLS algorithm is developed [8]. An additional
widely used estimation method in the literature is the
ML estimator, which maximizes the likelihood function
of the unknown target position. However, the correspond-
ing ML objective function is a highly nonlinear function,
under the Gaussian noise assumption [9]. In order to
avoid difficulties related to the multimodal nature of the
ML objective function, a semidefinite programing (SDP)
relaxation is applied to transform the nonconvex problem
into a convex problem [35]. However, in the presence
of significant measurement noise, the SDP has some
disadvantages in terms of accuracy; thus, it can only
provide a near-global optimal solution [35]. Thus, to
solve the ML estimation problem with high accuracy
and improve the convergence, for a given localization
problem, researchers have developed and applied various
efficient EAs [10].

A number of different EAs like DE, PSO, ABC, and CS
have been widely applied in order to solve the localization
problem, in terms of determining the unknown position of
the target [36]. In this regard, the PSO algorithm and its
improved variants have been applied to accurately estimate
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the position of the passive target using TDOAmeasurements
[37]. The simulation results have shown that improved
variants of PSO provide better localization performance
compared to the conventional PSO and well-known LLS
and WLS algorithms. In addition, the cuckoo search (CS)
algorithm has been used to estimate the position of the target
in the passive localization system based on TDOA measure-
ments [14]. Based on the simulation results, it can be con-
cluded that the CS algorithm has faster convergence speed
and more efficient global exploration ability compared to
the PSO and Newton iteration algorithms.

In recent years, a number of hybrid variants of the DE
algorithm have been created in order to efficiently balance
the exploration and exploitation abilities during the evolu-
tion process [23–25]. With respect to this, the direct
search Powell’s method has been combined with DE
(DESAP) [23], where the near-global solution obtained
by the DE algorithm is improved using Powell’s method.
To enhance the performance, the hybridization between
DE and a local search algorithm (MLSHADE-SPA), with
linear population size reduction and semiparameter adap-
tation, has been proposed [38]. Furthermore, the DE algo-
rithm has been hybridized with Hook-Jeeves in distributed
memetic DE algorithm (DMDE), to efficiently find the
global optimum and achieve a better trade-off between
the exploration and the exploitation [24]. In addition, a
new reflection-based mutation operation, inspired by the
reflection operations in the NM method, has been incor-
porated into the DE algorithm, with a combination of
multiple mutation strategies based on roulette wheel selec-
tion (MM-RDE) [25].

Therefore, this paper proposes an improved HADENM
algorithm, based on the hybridization of ADE and NM algo-
rithms, to solve the multimodal passive target localization
problem with high accuracy even in the presence of high
measurement noise.

3. Localization Problem

This section considers passive target localization problem in
two dimensions, using noisy TOA measurements. The
unknown position of a passive target can be determined
using one transmitter Tx and a set of receivers fRigNi=1, where
N is the number of receivers, such that N ≥ 3. Let x = ½x y�T
∈R2 be the unknown position of a passive target, xri =
½xri yri �T ∈R2, ∀i ∈ f1, 2,⋯,Ng be the known coordinates of
the ith receiver, and xT = ½0 0�T ∈R2 be the coordinates of
the transmitter, as shown in Figure 1.

The passive target localization system starts with the
transmitter emitting a signal, and upon arrival, the sig-
nal is reflected by the target. The considered TOA algo-
rithm employs the information of the absolute signal
travel time from the transmitter to the receivers to
obtain range measurements. Therefore, it is necessary
to know the signal departure time, which is achieved
by the synchronization between the transmitter and
receivers [26]. In addition, the Gaussian noise is widely
used in the localization algorithms under LOS environ-

ment [2]. In this case, the noisy TOA measurements
are obtained as follows:

ti =
1
c

xk k2 + x − xrik k2ð Þ + �ni, ∀i ∈ 1, 2,⋯,Nf g, ð1Þ

where k⋅k2 denotes the Euclidean distance, c is the speed of
light, and �ni denotes the zero-mean Gaussian measurement
noise with variance σ2

i . Then, multiplying ti by the speed of
light c, the range measurements (transmitter-target-receiver
distances), denoted by frigNi=1, can be written as

ri = c ⋅ ti = di + ni, ∀i ∈ 1, 2,⋯,Nf g, ð2Þ

where di = kxk2 + kx − xrik2 is the true range measurement
and ni = c�ni is the measurement noise, which follows the
Gaussian distribution N ð0, σ2niÞ, with zero-mean and vari-
ance σ2ni = c2σ2i .

From geometric interpretation in Figure 1, in the
absence of measurement noise, the true range measurement
di defines an ellipse Ei with focal points placed at xT and xri ,
respectively. Therefore, the corresponding ellipse Ei can be
defined as

Ei = x, yð Þ ∈R2 : di =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xrið Þ2 + y − yrið Þ2

q� �
:

ð3Þ

In this regard, the true passive target position x =
x y½ �T ∈R2 is determined at the intersection point of at
least three solid line ellipses fEigN≥3

i=1 , corresponding to the
TOA measurements, as shown in Figure 1.

Then, in the presence of measurement noise, the vector
form of Equation (2) can be written as

r = d xð Þ + n, ð4Þ

in which the vector of true range measurements is

d xð Þ =
xk k2 + x − xr1k k2

⋮

xk k2 + x − xrNk k2

2664
3775, ð5Þ

n = n1 ⋯ nN½ �T is the corresponding measurement noise
vector. In this case, three or more ellipses derived from mea-
surements do not have a unique intersection point. Thus, an
estimated position of the passive target can be found inside
the bounded region, i.e., the region surrounded by the bold
black curve, as depicted in Figure 1. In this way, the main goal
is to estimate the unknown position of the passive target
based on noisy TOA measurements, which involves solving
a highly nonlinear and multimodal ML estimation problem
explained in the following section.
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4. Maximum Likelihood Method

The unknown position of the passive target can be estimated
through maximizing the likelihood function. Under the
assumptions of Gaussian noisy TOA measurements, which
are independent and identically distributed, the likelihood
function LðxÞ for the passive target position [26] can be
expressed as

L xð Þ = f r xjð Þ = 1
2πð ÞN/2 det Cð Þ1/2

exp

� −
1
2 r − d xð Þð ÞTC−1 r − d xð Þð Þ

� �
,

ð6Þ

where f ðrjxÞ denotes the probability density function and
C = diag fσ21,⋯, σ2Ng is a diagonal covariance matrix.

In order to simplify the maximization problem, it is often
convenient to take the logarithm of the likelihood function,
which can be written as

ln L xð Þ = c −
1
2 r − d xð Þð ÞTC−1 r − d xð Þð Þ, ð7Þ

where c = ln ð1/ðð2πÞN/2 det ðCÞ1/2ÞÞ is a constant indepen-
dent of x. Consequently, the ML estimator requires the max-
imization of the log-likelihood function, which is equivalent
to minimizing the negative logarithm of the likelihood func-
tion. Then, after neglecting the constant terms, the ML esti-
mation problem can be formulated as

min
x∈R2

JML xð Þ =min
x∈R2

r − d xð Þð ÞTC−1 r − d xð Þð Þ, ð8Þ

where JMLðxÞdenotes the corresponding ML objective
function.

Thus, the goal is to find the optimal solution x̂ that
minimizes the objective function JMLðxÞ with respect to x,
such that

x̂ = argmin
x∈R2

JML xð Þð Þ: ð9Þ

Hence, the JMLðxÞ for the passive target localization
problem is depicted in Figure 2.

Figure 2 provides information about the nature of the
optimization problem and shows that JMLðxÞ is a highly non-
linear and nonconvex function with multiple local optima.
Therefore, finding the global optimal solution for a given
optimization problem becomes a significant challenge. Thus,
in order to solve this kind of complex optimization problem,
it is necessary to employ different optimization algorithms,
which are described in the next sections.

5. Constrained Weighted Least
Squares Algorithm

As a well-known and widely used localization algorithm in
WSNs, the CWLS algorithm is considered in this paper in
order to compare and evaluate the localization performance
of the proposed HADENM algorithm. The passive target
position is estimated using CWLS algorithm by squaring
both sides of Equation (2) and introducing Rt = kxk2 =ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2
p

[8], which yields

2xri x + 2yri y − 2riRt = xrið Þ2 + yrið Þ2 − r2i − 2niRt

+ 2rini, ∀i ∈ 1, 2,⋯,Nf g,
ð10Þ

R1

R4

y

R2

R3

x

No range error
With range error

x
Tx

Figure 1: Passive target localization system using noisy TOA measurements.
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where the second-order term of noise n2i can be neglected for
small noise levels. Hence, Equation (10) is linear, which can
be written as

Aθ = b +m, ð11Þ

where

A = 2
xr1 yr1 −r1
⋮ ⋮ ⋮

xrN yrN −rN

2664
3775, ð12Þ

θ = x y Rt
� �T , ð13Þ

b =
xr1ð Þ2 + yr1ð Þ2 − r21

⋮

xrNð Þ2 + yrNð Þ2 − r2N

2664
3775, ð14Þ

m = 2 r1 − Rt	 

n1 ⋯ rN − Rt	 


nN
� �T

: ð15Þ

Then, based on Equation (11) through Equation (15), the
following WLS optimization problem can be formulated as

min
θ

J θð Þ =min
θ

Aθ − bð ÞTW Aθ − bð Þ, ð16Þ

where, under the small noise assumption,W ∈ RN×N is a sym-
metric weighting matrix, which can be defined as

W = E mmT� �� �−1 = DTCD
	 
−1, ð17Þ

in which D = diag f2ðr1 − RtÞ,⋯, 2ðrN − RtÞg.

It should be noted that since the measurement noise m
from Equation (15) is Gaussian distributed and due to the
linear relationship in Equation (11), the objective function
of the ML estimator JMLðxÞ, given in Equation (8), is equiva-
lent to that of the WLS estimator [8]. Then, by incorporating
the relationship between unknown target position x and an
auxiliary variable Rt as a second-order equality constraint
in theWLS estimator, the following CWLS target localization
problem is obtained as

min
θ

 J θð Þ =min
θ

Aθ − bð ÞTW Aθ − bð Þ,

s:t:  θTSθ = 0,
ð18Þ

where S = diag f1, 1,−1g is a diagonal matrix.
The closed-form solution is not available due to the non-

linearity of the constrained problem. In this regard, an
unconstrained optimization problem is obtained by forming
the auxiliary Lagrange function ℒ ðθ, λÞ, as follows:

min
θ,λ

ℒ θ, λð Þ =min
θ,λ

Aθ − bð ÞTW Aθ − bð Þ + λθTSθ, ð19Þ

where λ is the Lagrange multiplier associated with the equal-
ity constraint. The corresponding optimal solution bθCWLS to
the CWLS problem can be obtained as

bθCWLS = ATWA + λS
	 
−1ATWb: ð20Þ

Hence, the Lagrange multiplier λ is found as the root of a
4th-order polynomial [8], as follows:

〠
3

i=1

αiβi

ζi + λð Þ2
= 0, ð21Þ

–20
40 30 20 10 –10 –200

–10

0x (m)

J M
L (

x)

y (m)

10

20

40

35

30

25

20

15
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5

0

Figure 2: Illustration of the objective function JMLðxÞ.
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where α =ΣTSATWb = ½α1 α2 α3�T , β = ðΣÞ−1ATWb, and
ATWAS =Σ diag fζ1, ζ2, ζ3gΣ−1 [8]. Then, based on the
CWLS method, the algorithm for the passive target localiza-
tion can be stated as follows:

Step 1. Set the symmetric weighting matrix W as unit matrix
I, i.e., W = I.

Step 2. Find all roots of Equation (21) taking into consider-
ation only real roots.

Step 3. For each λ, obtained in Step 2, determine subestimates
of bθCWLS using Equation (20). Then, separate subestimates
for which JðθÞ is minimal.

Step 4.Determine a weighting matrixW using Equation (17).

Step 5. Repeat Steps 2–4, while the predefined termination
criterion is satisfied.

6. Differential Evolution Algorithm and the
Proposed Modified Version

6.1. Differential Evolution Algorithm. The DE is a population-
based EA successfully applied for global optimization, which
is introduced by Storn and Price [12]. The evolution process
of the DE algorithm is based on four basic steps, i.e., ini-
tialization, mutation, crossover, and selection, which are
described below.

6.1.1. Initialization. The evolution process of the DE algo-
rithm starts with an initial population of n-dimensional NP
individuals, in which each individual represents a candidate

solution of the problem, i.e., fxðGÞi : xðGÞi,j ∈ ½xLi,j, xUi,j�g, ∀i ∈ f1,
2,⋯,NPg, ∀j ∈ f1, 2,⋯, ng, where G denotes the current
generation. For the considered localization problem, every

individual xðGÞi in two-dimensional space (i.e., n = 2) has
two variables corresponding to x and y coordinates of the tar-
get position. Here, xLi,j and xUi,j are the lower and upper
bounds of the jth component of the ith individual xi,j, respec-
tively. At G = 0, every individual is randomly generated as

x 0ð Þ
i,j = xLi,j + randj xUi,j − xLi,j


 �
, ð22Þ

where randj is a uniformly distributed random number in the
range ½0, 1�.
6.1.2. Mutation. The mutation operator is employed, after

initialization, to generate a new mutant vector vðGÞi =
vðGÞi,1 ⋯ vðGÞi,j ⋯ vðGÞi,n

h iT
for each target vector xðGÞi .

The most widely used mutation operators in the literature
[15] are

DE/rand/1:

v Gð Þ
i = x Gð Þ

r1
+ F x Gð Þ

r2
− x Gð Þ

r3


 �
, ð23Þ

DE/rand/2:

v Gð Þ
i = x Gð Þ

r1
+ F x Gð Þ

r2
− x Gð Þ

r3


 �
+ F x Gð Þ

r4
− x Gð Þ

r5


 �
, ð24Þ

DE/best/1:

v Gð Þ
i = x Gð Þ

best + F x Gð Þ
r1

− x Gð Þ
r2


 �
, ð25Þ

DE/current-to-best/1

v Gð Þ
i = x Gð Þ

i + F x Gð Þ
best − x Gð Þ

i


 �
+ F x Gð Þ

r1
− x Gð Þ

r2


 �
, ð26Þ

where r1, r2, r3, r4, and r5 are distinct integers randomly

selected from f1, 2,⋯,NPg \ fig, xðGÞbest is the individual
with the lowest objective function value, and F ∈ ½0, 1� is
the scale factor.

6.1.3. Crossover. In order to increase the diversity of the pop-
ulation, a binomial crossover operator is applied on the target

vector xðGÞi and the corresponding mutant vector vðGÞi to pro-

duce a trial vector uðGÞi , which can be expressed as follows:

u Gð Þ
i,j =

v Gð Þ
i,j if randi,j ≤ CR∨j = jrand

	 

x Gð Þ
i,j otherwise

8<: ,

 ∀j ∈ 1, 2,⋯, nf g, ∀i ∈ 1, 2,⋯,NPf g,
ð27Þ

where randi,j is an uniform number generated within ½0, 1�,
CR ∈ ½0, 1� is the crossover rate, and jrand ∈ f1, 2,⋯, ng is an
integer selected randomly.

6.1.4. Selection. After crossover, the selection operator is
employed to compare the objective function values of the

corresponding trial vector uðGÞi with the objective function

value of the target vector xðGÞi . The objective function value
of the ith individual in theGth generation has been calculated
using the ML objective function in (8), as follows:

f x Gð Þ
i


 �
= JML x Gð Þ

i


 �
, ð28Þ

f u Gð Þ
i


 �
= JML u Gð Þ

i


 �
: ð29Þ

In this way, the vector with a better objective function
value is selected, according to

x G+1ð Þ
i =

u Gð Þ
i if f u Gð Þ

i


 �
≤ f x Gð Þ

i


 �
,

x Gð Þ
i otherwise:

8<: ð30Þ

6.2. A Modified Differential Evolution Algorithm. In order to
improve the performance of the conventional DE algo-
rithm, this subsection introduces modifications to the
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scale factor and crossover rate. Furthermore, an automat-
ically adapted mutation operator is proposed, to select an
appropriate mutation strategy based on the current opti-
mization state.

6.2.1. Adaptive Scale Factor. The performance of the DE
algorithm depends largely on the proper choice of the
scale factor, which can affect the convergence. In this con-
text, a higher value of the scale factor, in the early stage,
improves the exploration ability, which has a positive effect
on the population diversity and, thus, avoids premature
convergence at local optima [18, 39]. In contrast, a smaller
value of the scale factor, in the later stage, improves the
exploitation ability, which can enhance the convergence
speed [18, 39].

Based on the above analysis, an adaptive scale factor FðGÞ
i ,

which is dynamically adapted in each generation for each
individual, is introduced as follows:

F Gð Þ
i = Fmax − Fmin

exp −10G f Gð Þ
i − f Gð Þ

best


 �
/ f Gð Þ

worst − f Gð Þ
best


 �
 �
 � , 

∀i ∈ 1, 2,⋯,NPf g,
ð31Þ

where Fmin and Fmax are minimum and maximum values of

FðGÞ
i , and f ðGÞbest, f

ðGÞ
worst, and f ðGÞi are the objective function

values of the best, worst, and ith individual, respectively.
In this respect, Figure 3 illustrates the changes of the pro-

posed adaptive scale factor FðGÞ
i defined in Equation (31) dur-

ing the evolution process, where Fmax = 0:9 and Fmin = 0:5.
According to Figure 3, it is evident that in the early stage,

the adaptive scale factor FðGÞ
i has a larger value, which is suit-

able for exploration. During the later stage, with the increase

of generations, the adaptive scale factor FðGÞ
i starts to

decrease, which improves exploitation and accelerates the
local convergence of the algorithm.

6.2.2. Adaptive Crossover Rate. According to the analysis in
[18, 40], adapting the suitable value of the crossover rate
can maintain the diversity of the population and improve
the quality of the solution. From Equation (30), it is evident
that for the large value of the crossover rate, the mutant vec-

tor vðGÞi has a greater contribution to the trial vector uðGÞi . In
this case, a higher crossover rate increases the population
diversity and enhances the global search. In contrast, for a

smaller crossover rate, any trial vector uðGÞi keeps the previ-

ous state xðGÞi with a large probability. This can further refine
the trial vector, which is beneficial for improving the quality
of the solution.

In this regard, an adaptive crossover rate CRðGÞ is pro-
posed here, to address the above mentioned issues, which is
defined as

CR Gð Þ = CRmax − CRminð Þ ⋅ 2−exp 3− Gmax/ G+1ð Þð Þð Þ + CRmin, ð32Þ

where Gmax is the maximum number of generations and
CRmax and CRmin are the maximum and minimum values
of CRðGÞ, respectively.

In this way, Figure 4 shows the proposed adaptive cross-
over rate CRðGÞ versus the number of generations, where
CRmax = 0:9 and CRmin = 0:1.

As can be seen from Figure 4, the CRðGÞ has a large value
in the initial stage of the evolution process and gradually
decreases with the increase of generations. In this way, larger
CRðGÞ can advance the population diversity and strongly
enhance the exploration ability. During the later stage of
the evolution process, the CRðGÞ takes a small value, which
is beneficial for improving the quality of the solution.

6.2.3. The Adaptive Mutation Operator. The performance of
the DE algorithm, such as convergence, population diversity,
and exploration ability, is greatly affected by mutation oper-
ators. The appropriate mutation operators for different evo-
lutionary stages have been proposed here, with the aim to
avoid premature convergence and prevent stagnation. In this
manner, the DE/rand/1 and DE/rand/2 have strong global
exploration ability, while the DE/best/1 operator has a good
local exploitation ability [20]. In order to further improve
the local search ability, the DE/current-to-best/1 mutation
operator can be employed [20].

Based on the above considerations, to dynamically
adjust the global exploration and local exploitation abili-
ties, this paper proposes an adaptive adjustment parameter
δðGÞ, as follows:

δ Gð Þ = f Gð Þ
best − f Gð Þ

mean

f Gð Þ
best − f Gð Þ

worst

�����
�����, ð33Þ

where f ðGÞmean is mean value of the objective function. Thus,
the pseudocode of the proposed adaptive mutation opera-
tor is shown in Algorithm1.

As a matter of fact, the adaptive parameter δðGÞ ∈ ½0, 1�
has an important influence on the identification of evolution-
ary stages in the search process. According to Equation (33),
in the early stage, the value of δðGÞ is close to 1, which indi-
cates that the population is far from the region of the global
optimum, and this corresponds to the global exploration in
the search space. Hence, the DE/rand/1 and DE/rand/2 will
be chosen randomly with the probability of 0.5, in order to
improve the exploration and find the region of the global
optimum. In the later stage, the value of δðGÞ is close to 0,
which shows that the population is near the region of the
global optimum, and this corresponds to the local exploita-
tion. Therefore, the DE/best/1 and DE/current-to-best/1 will
be randomly selected, with the probability of 0.5, to
strengthen the exploitation ability and further improve the
solution quality.

7. Nelder-Mead Method

The Nelder-Mead is a local search method that does not
require the derivative information of the objective function
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[25]. In general, the NM method is described for the min-
imization of an objective function in n-dimensional space.
The evolution process of the NM method starts with an
initial simplex in the search space, which is a polyhedron
with n + 1 vertices, i.e., fxi : 1 ≤ i ≤ ng. The objective func-
tion is evaluated at each vertex, and then all vertices are
ranked based on their objective function values, i.e., the
vertex corresponding to the best objective function value

is denoted as x1 and the vertex corresponding to the worst
objective function value is denoted as xn+1. The NM
method uses four elementary geometric transformations,
called reflection, expansion, contraction, and shrinkage.
Using these geometric transformations, the simplex moves
through the search space towards the optimal solution.
The following steps are executed repeatedly until reaching
stopping criteria:
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Figure 3: The changes of the proposed adaptive scale factor FðGÞ
i during the evolution process.
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Step 1. Initialization. Given an initial vertex xð0Þ1 , obtained
by the ADE algorithm, generate the remaining n vertices

fxð0Þi+1 : 1 ≤ i ≤ ng according to

x 0ð Þ
i+1 = x 0ð Þ

1 + λei, ∀i ∈ 1, 2,⋯, nf g, ð34Þ

where ei is the unit vector of the ith axis and λ is the ini-
tial step size, set as λ = 1.

Step 2. Sorting. Rank the vertices as follows

f x kð Þ
1


 �
≤⋯≤ f x kð Þ

n+1

 �

, ð35Þ

where k is the current iteration. Here, the objective function
value is obtained from the ML objective function in Equation

(8), as follows: f ðxðkÞi Þ = JMLðxðkÞi Þ.

Step 3. Reflection. Generate the vertex xðkÞr by reflecting the

vertex xðkÞn+1, as follows:

x kð Þ
r = �x kð Þ + α �x kð Þ − x kð Þ

n+1


 �
, ð36Þ

where α > 0 is the reflection coefficient, usually suggested as
α = 1 and

�x kð Þ = 1
n
〠
n

i=1
x kð Þ
i , ð37Þ

is the centroid of the n best vertices. If f ðxðkÞ1 Þ ≤ f ðxðkÞr Þ < f

ðxðkÞn Þ, replace xðk+1Þn+1 with xðkÞr and terminate the iteration.

If f ðxðkÞr Þ < f ðxðkÞ1 Þ, continue with the expansion; otherwise,
perform contraction.

Step 4. Expansion. Calculate the vertex xðkÞe in the same direc-

tion as xðkÞr , as follows:

x kð Þ
e = �x kð Þ + β x kð Þ

r − �x kð Þ

 �

, ð38Þ

where β > 1 is the expansion coefficient, usually suggested as

β = 2. If f ðxðkÞe Þ < f ðxðkÞr Þ, replace the vertex xðk+1Þn+1 with xðkÞe

and terminate the iteration; otherwise, replace xðk+1Þn+1 with

xðkÞr and terminate the iteration.

Step 5. Contraction. After reflection, there are two possible
contraction cases:

Step 5.1. Outside contraction. If f ðxðkÞn Þ ≤ f ðxðkÞr Þ < f ðxðkÞn+1Þ,
generate the vertex xðkÞc as

x kð Þ
c = �x kð Þ + γ x kð Þ

r − �x kð Þ

 �

, ð39Þ

where 0 < γ < 1 is the contraction coefficient, usually sug-

gested as γ = 0:5. If f ðxðkÞc Þ ≤ f ðxðkÞr Þ, replace xðk+1Þn+1 with xðkÞc

and terminate the iteration; otherwise, perform shrinkage.

Step 5.2. Inside contraction. If f ðxðkÞr Þ ≥ f ðxðkÞn+1Þ, generate the
vertex xðkÞcc as follows:

x kð Þ
cc = �x kð Þ − γ x kð Þ

r − �x kð Þ

 �

: ð40Þ

If f ðxðkÞcc Þ < f ðxðkÞn+1Þ, replace xðk+1Þn+1 with xðkÞcc and terminate
the iteration; otherwise, do shrinkage.

Step 6. Shrinkage. Perform the shrinkage on the vertices ∀i
∈ f2,⋯, n + 1g as follows:

x k+1ð Þ
i = x kð Þ

1 + δ x kð Þ
i − x kð Þ

1

 �

, ð41Þ

where 0 < δ < 1 is the shrinkage coefficient, usually suggested
as δ = 0:5. The optimization process described in Steps 1–6 is
repeated until the termination criteria are reached. The
obtained optimal solution represents the estimated position
x̂ of the unknown target position x.

8. HADENM Algorithm

In this section, the proposed HADENM algorithm is intro-
duced that hybridizes the ADE algorithm with the local
search NM method, in order to efficiently solve the passive
target localization problem given in Equation (8). In this
way, the pseudocode of the HADENM algorithm is presented
in Algorithm2, for the passive target localization problem.

9. Cramer-Rao Lower Bound

In the passive target localization problem, the CRLB can be
used as a benchmark for evaluating the performance of

if δðGÞ > 0:5 then
if rand > 0:5 then
vðGÞi = xr1 + FðGÞ

i ðxr2 − xr3Þ
else

vðGÞi = xr1 + FðGÞ
i ðxr2 − xr3Þ + FðGÞ

i ðxr4 − xr5Þ
end if

else if δðGÞ > 0:5 then
if rand > 0:5 then
vðGÞi = xbest + FðGÞ

i ðxr1 − xr2Þ
else

vðGÞi = xi + FðGÞ
i ðxbest − xiÞ + FðGÞ

i ðxr1 − xr2Þ
end if

end if

Algorithm 1: Pseudocode of the adaptive mutation operator.
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Initialize the parameters: NP, Gmax, Fmax, Fmin, CRmax, CRmin, α, β, γ
Generate a uniformly distributed random population
while ADE termination condition is not satisfied do

for i = 1 to NP do

Compute the adaptive parameters FðGÞ
i and CRðGÞ

Compute δðGÞ

if δðGÞ > 0:5 then
if rand > 0:5 then

vðGÞi ⟵ xr1 + FðGÞ
i ðxr2 − xr3Þ

else

vðGÞi ⟵ xr1 + FðGÞ
i ðxr2 − xr3Þ + FðGÞ

i ðxr4 − xr5Þ
end if

else if δðGÞ ≤ 0:5 then
if rand > 0:5 then

vðGÞi ⟵ xbest + FðGÞ
i ðxr1 − xr2Þ

else

vðGÞi ⟵ xi + FðGÞ
i ðxbest − xiÞ + FðGÞ

i ðxr1 − xr2Þ
end if

end if
if randj,i ⩽ CRðGÞ∨j = jrand then

uðGÞi, j ⟵ vðGÞi,j
else

uðGÞi, j ⟵ xðGÞi,j
end if

if f ðuðGÞi,j Þ ⩽ f ðxðGÞi,j Þ then
xðG+1Þi ⟵ uðGÞi

else

xðG+1Þi ⟵ xðGÞi
end if

end for
end while
Initialize the NM with the current best solution found by ADE
while NM termination condition is not satisfied do

Sort the vertices according to f ðxðkÞ1 Þ≤⋯≤f ðxðkÞn+1Þ
Perform reflection

if f ðxðkÞ1 Þ ≤ f ðxðkÞr Þ < f ðxðkÞn Þ then
xðk+1Þn+1 ⟵ xðkÞr

end if
Perform expansion

if f ðxðkÞe Þ < f ðxðkÞr Þ then
xðk+1Þn+1 ⟵ xðkÞe

else

xðk+1Þn+1 ⟵ xðkÞr

end if

if f ðxðkÞn Þ ≤ f ðxðkÞr Þ < f ðxðkÞn+1Þ then
Perform outside contraction

if f ðxðkÞc Þ ≤ f ðxðkÞr Þ then
xðk+1Þn+1 ⟵ xðkÞc

else
Perform Shrinkage

end if

else if f ðxðkÞr Þ ≥ f ðxðkÞn+1Þ then
Perform inside contraction

Algorithm 2: Continued.
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different algorithms. The CRLB is obtained from the diagonal
elements of the inverse of the Fisher information matrix
(FIM) [26], denoted by IðxÞ, which is based on the probabil-
ity density function f ðrjxÞ, defined in Equation (6), and is
represented as

I xð Þ = E
∂ ln f rjxð Þð Þ

∂x

� �
∂ ln f rjxð Þð Þ

∂x

� �T
" #

= −E
∂2ln f rjxð Þð Þ

∂x∂xT

" #
:

ð42Þ

Based on this, the FIM can be defined as

I xð Þ =
Ixx Ixy

Iyx Iyy

" #
, ð43Þ

where the corresponding elements are given as follows:

Ixx = 〠
N

i=1

1
σ2ni

x − xri
x − xrik k2

+ x
xk k2

� �2
, ð44Þ

Ixy = Iyx = 〠
N

i=1

1
σ2ni

x − xri
x − xrik k2

+ x
xk k2

� �
y − yri
x − xrik k2

+ y
xk k2

� �
,

ð45Þ

Iyy = 〠
N

i=1

1
σ2ni

y − yri
x − xrik k2

+ y
xk k2

� �2
: ð46Þ

Hence, the relationship between the variance and CRLB
can be determined as

E x̂ − xð Þ x̂ − xð ÞT
h i

≥ tr I xð Þ−1� �
= CRLB xð Þ, ð47Þ

where x̂ is the estimated value of x.

10. Experimental Study

In this section, experiments are conducted to evaluate the
localization performance and to perform the analysis of the
benefits of the proposed modifications on the optimization
performance of the HADENM algorithm. In this regard,

the presentation of the experimental results is divided into
two subsections, described below.

10.1. A Parametric Study on HADENM Algorithm. In this
subsection, the experiments are carried out to evaluate the
performance of the HADENM algorithm by studying the
effects of the proposed adaptive scale factor and crossover
rate, as well as the proposed adaptive mutation operator on
the optimization performance. Furthermore, the effects of
the hybridization between the ADE and NM algorithms have
been analysed. Then, the experiments are performed in order
to verify that the performance is enhanced after combining
the previously described improvements.

To evaluate the performance of the proposed HADENM
algorithm, the solution error measure ð f ðx̂Þ − f ðx∗ÞÞ has
been employed, where x̂ denotes the best solution of the algo-
rithm obtained in one run and x∗ represents the well-known
global optimal solution of the corresponding ML objective
function. All experiments for each algorithm have been inde-
pendently run 30 times and statistical results are provided.
From the statistical point of view, the quality of the obtained
solutions has been analysed and compared using two non-
parametric statistical hypothesis tests such as the Wilcoxon
signed-rank test and Friedman test.

Firstly, the Wilcoxon signed-rank test can be used to
determine the significant differences between two samples
obtained by the algorithms. This statistic test has been
applied with a significance level of α = 0:05. Here, R+ denotes
the sum of ranks for the problem in which the first algorithm
outperformed the second and R− is the sum of ranks for the
problem where the first algorithm performed worse than
the second. According to [41], in the Wilcoxon signed-rank
test for the null hypothesis, it is assumed that, “there is no dif-
ference between the mean results of the two samples.” On the
contrary, the alternative hypothesis is that, “there is a differ-
ence in the mean results of the two samples.” In the statistical
analysis, the p value is used and compared to the significance
level. Thus, the null hypothesis can be rejected when the p
value is less than or equal to α = 0:05. Based on the
obtained results of the statistical test, one of the following
three signs (+, −, and ≈) has been assigned for the compar-
ison between any two algorithms. Thus, the plus (+) sign
denotes that the first algorithm is significantly better than
the second, the minus (−) sign means that the first algo-
rithm is significantly worse than the second, and the

if f ðxðkÞcc Þ < f ðxðkÞn+1Þ then
xðk+1Þn+1 ⟵ xðkÞcc

else
Perform Shrinkage

end if
end if

end while
Display the results

Algorithm 2: Pseudocode of the HADENM algorithm.
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approximation (≈) sign denotes that there is no significant
difference between two algorithms.

The second test is the Friedman test, which obtains the
ranks of all considered algorithms over every tested function,
with the aim to find the significant differences in perfor-
mance between two or more algorithms. In this statistical
test, the algorithm with a minimum rank value is considered
as the best performing algorithm, while the one with the
highest rank value is considered as the worst. According to
[41], the null hypothesis for Friedman test states that, “there
is no difference among the performance of all algorithms,”
whereas the alternative hypothesis states that, “there is a dif-
ference among the performance of all algorithms”.

In this regard, the presentation of the obtained results of
the considered evaluations is divided into four sub-
subsections. In the first sub-subsection, the effectiveness of
the proposed adaptive scale factor and crossover rate has
been evaluated. In the second sub-subsection, the effective-
ness of the proposed adaptive mutation operator has been
considered. The third sub-subsection considers the hybridi-
zation of ADE and NM algorithms and the overall perfor-
mance improvements. Finally, in the fourth sub-subsection,
the statistical results of applying the Friedman test between
the considered algorithms have been analysed.

10.1.1. Effectiveness of the Adaptive Scale Factor and
Crossover Rate. In this sub-subsection, the experimental
studies have been performed to evaluate the effectiveness

and benefits of the proposed adaptive scale factor FðGÞ
i (given

in Equation (31)) and adaptive crossover rate CRðGÞ (given in
Equation (32)) on the optimization performance of the
HADENM algorithm. Firstly, the effectiveness of the adap-
tive scale factor is considered, where the performance of the
HADENM algorithm is evaluated with two different fixed
values of F, as follows:

(1) HADENMF=0.5, which has the same operators as
HADENM, except that the scale factor is set to a fixed
value of F = 0:5

(2) HADENMF=0.9, which has the same operators as
HADENM, except that the scale factor is set to a fixed
value of F = 0:9

The summary of statistical results of applying the
Wilcoxon test between the proposed HADENM and the
above two algorithms is presented in Table 1.

From the results in Table 1, it can be seen that the pro-
posed HADENM algorithm is significantly better than
HADENMF=0.5. On the other hand, in the case of HADENM
versus HADENMF=0.9, the proposed algorithm has a higher
R+ value than R−. This shows the effectiveness of the pro-

posed adaptive scale factor FðGÞ
i given in Equation (31) and

the idea of increasing the scale factor during the evolution
process. Hence, the main purpose of this comparison is to
show that the HADENM algorithm with the adaptive scale

factor FðGÞ
i can achieve better performance than the same

algorithm with a fixed value of F.

Secondly, in order to show the efficiency of the proposed
adaptive crossover rate CRðGÞ in Equation (32), the perfor-
mance of the HADENM algorithm is compared with three
different fixed values of CR, as follows:

(1) HADENMCR=0.1, which has the same operators as
HADENM, except that the crossover rate is set to a
fixed value of CR = 0:1

(2) HADENMCR=0.5,which has the same operators as
HADENM, except that the crossover rate is set to a
fixed value of CR = 0:5

(3) HADENMCR=0.9, which has the same operators as
HADENM, except that the crossover rate is set to a
fixed value of CR = 0:9

Table 2 shows the summary of statistical results of apply-
ing the Wilcoxon test between the proposed HADENM and
the above three algorithms.

From the results in Table 2, it can be seen that the
proposed HADENM algorithm has significantly better per-
formance than HADENMCR=0.5 and HADENMCR=0.9. Fur-
thermore, in the case of HADENM versus HADENMCR=0.1,
it can be observed that the proposed algorithm provides
higher R+ values than R− in all considered cases. This shows
that the proposed adaptive crossover rate CRðGÞ plays a vital
role in determining the optimal crossover rate value for the
considered optimization problem.

10.1.2. Effectiveness of the Proposed Adaptive Mutation
Operator. In this sub-subsection, to evaluate the effectiveness
and improvement of the proposed adaptive mutation oper-
ator on the optimization performance of the HADENM
algorithm, the experimental studies have been performed.
In this way, two different versions of the HADENM algo-
rithm have been tested and compared against the proposed
one, such as

(1) HADENM-1, which has the same operators as
HADENM, except that only the explorative muta-
tions of the proposed adaptive mutation operator
are applied. Hence, only the mutation operators
DE/rand/1 and DE/rand/2 will be chosen randomly
with the probability of 0.5

(2) HADENM-2, which has the same operators as
HADENM, except that only the exploitative muta-
tions of the proposed adaptive mutation operator
are applied. In this case, the mutation operators
DE/best/1 and DE/current-to-best/1 will be ran-
domly selected, with the probability of 0.5

Table 1: Results of the Wilcoxon test for HADENM,
HADENMF=0.5, and HADENMF=0.9 at a significance level of 0.05.

Algorithm R+ R− p value Dec.

HADENM versus HADENMF=0.5 346 119 0.0177 +

HADENM versus HADENMF=0.9 282 183 0.3207 ≈
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In Table 3, the summary of statistical results of applying
the Wilcoxon test between the proposed HADENM,
HADENM-1, and HADENM-2 algorithms is shown.

According to theWilcoxon test, given in Table 3, it can be
observed that the proposed HADENM algorithm provides
higher R+ values than R− in both cases. The obtained results
indicate that the proposed adaptive mutation operator can
effectively keep the balance between exploration and exploi-
tation abilities, thus improving the overall optimization per-
formance of the HADENM algorithm.

10.1.3. Effectiveness of the Proposed Hybridization. To
study the effects of the proposed hybridization between
the ADE and NM algorithms, in this sub-subsection, the
following experiment has been performed. In this regard,
the performance of the HADENM algorithm without
using the NM method has been compared to the perfor-
mance of the proposed HADENM algorithm. Thus, the
summary of statistical results of applying the Wilcoxon
test between the two abovementioned algorithms is shown
in Table 4.

According to the obtained statistical results in Table 4, it
can be concluded that the proposed HADENM algorithm
has better performance compared to the algorithm without
using the NM method. This shows that the NM method
can further enhance the quality of the obtained solution,
and in this way, it can improve the optimization performance
of the HADENM algorithm.

10.1.4. Comparison of the Proposed Improvements. In this
sub-subsection, the experimental studies have been per-
formed in order to demonstrate the effectiveness of the pro-
posed HADENM algorithm. As there are more than two
algorithms for comparison, the overall performance of the
considered algorithms has been compared using the Fried-
man test. In this regard, Table 5 shows the average ranks
according to the Friedman test for the considered algorithms,
using different values of the variance of the noise 10 log ðσ2niÞ,
where the proposed HADENM algorithm is selected as the
base algorithm. The best ranks are shown in bold, and the
second ranks are in italics.

From Table 5, it can be noted that the p values computed
through the Friedman test for different values of the variance
of the noise 10 log ðσ2niÞ are less than 0.05. Therefore, this
means that there is a significant difference in performance
between the considered algorithms. Furthermore, it can
be observed that the proposed HADENM algorithm outper-

forms other considered algorithms for all values of 10 log
ðσ2

niÞ, which demonstrates the effectiveness of the modifica-
tions proposed in this paper.

10.2. Localization Performance. The simulations are per-
formed for the passive target localization system in the LOS
environment, which consists of one transmitter, four
receivers located at known positions, and the passive target,
which is located at a different position for each simulation
scenario. The transmitter is located at xT = ½0 0�T m, while
the receiver positions are xr1 = ½60 60�T m, xr2 = ½60 − 60�T m,
xr3 = ½−60 − 60�T m, and xr4 = ½−60 60�T m, respectively. To
evaluate the effectiveness of the HADENM algorithm to the
measurement error, three scenarios are considered: (i) the
position of the target is inside the convex hull formed by
the set of receivers at the position x = ½5 25�T m, (ii) the target
is located outside of the convex hull at the position x =
½80 50�T m, and (iii) the position of the target is deployed ran-
domly over an area 80 × 80m2, and its position is different
for each simulation run.

Table 2: Results of the Wilcoxon test for HADENM,
HADENMCR=0.1, HADENMCR=0.5, and HADENMCR=0.9 at a
significance level of 0.05.

Algorithm R+ R− p value Dec.

HADENM versus HADENMCR=0.1 264:5 150 0:7761 ≈

HADENM versus HADENMCR=0.5 253 72 0:0135 +

HADENM versus HADENMCR=0.9 259 66 0:0079 +

Table 3: Results of the Wilcoxon test for HADENM, HADENM-1,
and HADENM-2 at a significance level of 0.05.

Algorithm R+ R− p value Dec.

HADENM versus HADENM-1 314:5 105:5 0:1019 ≈

HADENM versus HADENM-2 283 182 0:2915 ≈

Table 4: Results of the Wilcoxon test for the HADENM algorithm
without using the NM method and the proposed HADENM
algorithm at a significance level of 0.05.

Algorithm R+ R− p value Dec.

HADENM versus ADE 465 0 0:000 +

Table 5: Average ranks computed through the Friedman test for all
algorithms across different values of the variance of the noise 10
log ðσ2niÞ, at the significance level of 0.05.

Algorithm -40 -20 20 40
Mean
ranking

Rank

HADENM 3.07 3.30 3.37 2.98 3.27 1

HADENM-2 3.87 3.70 3.47 3.02 3.63 2

HADENM-1 4.00 3.93 4.10 4.67 4.22 3

HADENMCR=0.1 4.73 4.53 3.80 4.28 4.27 4

HADENMF=0.9 4.03 5.07 4.80 4.68 4.64 5

HADENMCR=0.5 4.80 4.87 5.33 5.08 4.94 6

HADENMF=0.5 5.57 5.00 5.47 5.35 5.34 7

HADENMCR=0.9 5.93 5.60 5.67 5.93 5.69 8

Friedman p value 0.000 0.003 0.000 0.000
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Here, the RMSE is employed to evaluate the localization
accuracy, which is expressed as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nm

〠
Nm

n=1
x̂ nð Þ − x

�� ��2
2

vuut , ð48Þ

where the estimated value of the true target position is x̂ðnÞ
and Nm = 1000 is the number of simulation runs for a given
variance of the noise σ2

ni.
Figure 5 shows the results of the first scenario, where the

RMSEs of the considered algorithms versus p = 10 log ðσ2niÞ
are plotted and compared against the CRLB.

From Figure 5, it can be observed that the RMSE per-
formance of the HADENM algorithm is better compared
to the DE and the CWLS, and the proposed algorithm
attains the CRLB for all the considered ranges of p. More-
over, the DE and the CWLS algorithms can achieve the
RMSE performance several dBs above the CRLB, for small
measurement noise. However, as the noise level increases,
i.e., p ≥ 20dB, the CWLS algorithm separates faster from
the CRLB accuracy.

The simulation results of the second scenario are pre-
sented in Figure 6, where the RMSEs of all the considered
algorithms versus measurement noise p are plotted.

According to the simulation results in Figure 6, it can be
observed that the HADENM algorithm attains the CRLB
accuracy and has a superior localization performance com-
pared to the other considered algorithms. Furthermore, it is
concluded that there is a significant degradation in the local-
ization accuracy of the CWLS and DE algorithms compared
to the first simulation scenario. It is also noted that, the
RMSE of the CWLS algorithm diverges rapidly from the
CRLB for large values of the measurement noise, i.e., when
p ≥ 5dB.

Moreover, the RMSEs of the considered algorithms ver-
sus p are plotted in Figure 7 for the third simulation scenario,
where the true position of the passive target is randomly gen-
erated within the considered area for each simulation run.

As expected, the results of the third simulation scenario,
presented in Figure 7, show that the HADENM algorithm
attains theCRLBaccuracy andprovides superior performance
over the CWLS and DE algorithms. Therefore, summarizing
the results of the three simulation scenarios, presented in
Figures 5–7, it can be concluded that the proposedHADENM
algorithm has a better localization performance compared to
the considered algorithms and successfully attains the CRLB
for every considered scenario. Furthermore, it is observed
that the proposed algorithm is less sensitive to the changes
in the geometric configuration of the transmitter, receivers,
and target.

For a better comparison of the simulation results, the
cumulative distribution functions (CDFs) of the passive tar-
get localization error of the considered algorithms are inves-
tigated, with different variances of the measurement noise
σ2
ni. The localization error (LE) is defined as the Euclidean

distance between the estimated and the true position of the
passive target, i.e.,

LE = x̂ nð Þ − x
��� ���

2
, ∀n ∈ 1,⋯,Nmf g: ð49Þ

Figure 8 represents the simulation results for the second
scenario with the corresponding CDFs in terms of the local-
ization error obtained for each algorithm for different vari-
ances of the measurement noise σ2ni.

From the CDFs of the localization error, depicted in
Figure 8, it can be observed that for a fixed CDF percentage,
e.g., 90%, under the measurement noise σ2ni = 1m2, the
HADENM algorithm has the lowest localization error of
1:2m, while the DE and CWLS algorithms have 1.3m and
1.5m, respectively. When the value of the measurement noise
is increased to σ2

ni = 10m2, the HADENM algorithm has the
localization error of 3.8m, while the DE and the CWLS show
localization errors of 3.9m and 4.2m, respectively. For the
higher value of measurement noise, e.g., σ2

ni = 20m2, the
HADENM algorithm has a localization error of 5.6m, while
the DE and CWLS algorithms have 5.8m and 6.1m, respec-
tively. Based on the above, it is evident that the HADENM
algorithm has a smaller localization error compared to the
other considered algorithms.

Finally, the influence of increasing the number of
receivers on the localization accuracy of different algorithms
is investigated for the first simulation scenario. In this regard,
an arrangement ofNj = 21 receivers uniformly distributed on
a circle of radius R = 60

ffiffiffi
2

p
m is considered, where the coor-

dinates of the ith receiver are obtained as follows: xri =
R cos φi R sin φi½ �T , ∀i ∈ f1, 2,⋯,Njg. In this way,
Figure 9 shows the RMSE performances of the considered
algorithms versus the number of receivers, when the variance
of the measurement noise is σ2ni = 1m2.

From Figure 9, it is observed that with the increase of the
number of receivers from 4 to 15, the RMSE performances of
the CWLS, DE, and HADENM algorithms improve signifi-
cantly. Further increase in the number of receivers does not
explicitly enhance the localization accuracy. Thus, the differ-
ence between the RMSE values of the considered algorithms
is smaller. Therefore, based on the obtained results, it can be
concluded that the proposed HADENM algorithm is robust
against variations in the topology and provides a superior
performance among all the considered algorithms.

10.2.1. Computational Complexity of the Considered
Algorithms. In this sub-subsection, the computational com-
plexity of the HADENM algorithm and other considered
algorithms is presented, and the analysis of the average com-
putation time is also given for the comparison. It should be
noted that in this paper, the computational complexity of
the considered algorithms is only analysed in a single gener-
ation. It has been previously shown that the computational
complexity of the CWLS algorithm is OðGmaxðn + 1ÞÞ [8],
while the conventional DE algorithm has the complexity of
OðGmaxNPnÞ [42]. During one generation of the proposed
HADENM algorithm, all the individuals in the population
are sorted according to the objective function value, where
the average computational complexity of this process is
OðNP log ðNPÞÞ. Then, all individuals in the population
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go through mutation, crossover, and selection operations,
which have the computational complexity approximately
equal to OðNPðn + Coc + CosÞÞ [43]. Here, Coc and Cos

denote the costs of crossover and selection operations in
the DE algorithm, respectively. Afterwards, the accuracy of
the best solution is further improved by the NM algorithm,
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Figure 5: RMSEs versus p for a passive target at x = ½5 25�T m.
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Figure 6: RMSEs versus p for a passive target at x = ½80 50�T m.
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Figure 7: RMSEs versus p with a random passive target position.
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which has the computational complexity Oðn log nÞ [44].
Based on the above considerations, the computational com-
plexity of the HADENM algorithm can be simplified to O
ðGmaxNPn + n log nÞ.

Next, the average computation times in searching for the
global optimum have been determined on the same com-
puter with 3.2GHz CPU and 16GB of RAM. In this way,
based on the considered simulation scenarios, a comparison
between the average computation times of the CWLS, DE
and HADENM algorithms is shown in Table 6.

Table 6 shows that the CWLS algorithm has the fastest
implementation among the considered algorithms, while
there is no significant difference between the HADENM
and DE algorithms. Based on the results of the analysis of
localization accuracy, the results in Table 6 indicate that the
proposed HADENM algorithm achieves the best compro-
mise between the localization accuracy and the average com-
putation time in searching for the global optimum.

11. Conclusion

In this paper, the passive target localization problem has been
considered, based on TOA measurements, for the system
with one transmitter and a set of receivers. In order to solve
this nonlinear and nonconvex localization problem even in
highly noisy environments, an improved HADENM algo-
rithm, based on the hybridization of the ADE and NM algo-
rithms, has been proposed. An adaptive mutation operator
has been developed to provide a good balance between the
global exploration and local exploitation abilities. In addi-

tion, to further enhance the optimization performance, the
control parameters of the ADE are adaptively updated dur-
ing the evolution process. Furthermore, the exploitation
ability is enhanced by the NM method, which improves
the accuracy of the best solution previously obtained by
the ADE algorithm. To evaluate the benefits of the proposed
modifications on the optimization performance, statistical
analysis has been conducted.

Based on the comparison results between the HADENM
algorithm and its versions, it can be concluded that the mod-
ifications proposed in this paper can improve the overall
optimization performance. Furthermore, the simulation
results show that the proposed HADENM algorithm pro-
vides superior localization performance, under different
measurement noise conditions, compared to the DE and
CWLS algorithms. Moreover, the HADENM algorithm
attains the CRLB accuracy and exhibits better robustness
against variations in network topology and under high mea-
surement noise. In this way, the HADENM algorithm has the
ability to provide both accuracy and robustness compared to
the other considered algorithms.
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Figure 9: RMSE performances of the considered algorithms versus the number of receivers.

Table 6: Average computation times of the considered localization
algorithms.

CWLS (ms) DE (ms) HADENM (ms)

Scenario 1 0:567 7:1 8:3
Scenario 2 0:466 6:4 7:8
Scenario 3 0:926 8:6 8:7
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Future research can be focused on further improving the
performance of the proposed algorithm and applying it to
other complex optimization problems in WSNs.
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