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Abstract. This paper deals with optimization of the sizing, location and orientation of the piezo-
fiber reinforced composite (PFRC) actuators and active vibration control of the smart composite plates 
using particle-swarm optimized self-tuning fuzzy logic controller. The optimization criteria for optimal 
sizing, location and orientation of the PFRC actuators is based on the Gramian controllability matrix and 
the optimization process is performed by involving the limitation of the plates masses increase. Optimal 
configurations of five PFRC actuators for active vibration control of the first six modes of cantilever 
symmetric ((90°/0°/90°/0°)S), antisymmetric cross-ply ((90°/0°/90°/0°/90°/0°/90°/0°)) and antisymmetric 
angle-ply ((45°/-45°/45°/-45°/45°/-45°/45°/-45°)) composite plates are found using the particle swarm 
optimization. The detailed analysis of influences of the PFRC layer orientation and position (top or 
bottom side of composite plates), as well as bending-extension coupling of antisymmetric laminates on 
controllabilities is also performed. The experimental study is performed in order to validate this behavior 
on controllabilities of antisymmetric laminates. The particle swarm-optimized self-tuning fuzzy logic 
controller (FLC) adapted for the multiple-input multiple-output (MIMO) control is implemented for 
active vibration suppression of the plates. The membership functions as well as output matrices are 
optimized using the particle swarm optimization. The Mamdani and the zero-order Takagi–Sugeno–Kang 
fuzzy inference methods are employed and their performances are examined and compared. In order to 
represent the efficiency of the proposed controller, results obtained using the proposed particle swarm 
optimized self-tuning FLC are compared with the corresponding results in the case of the linear quadratic 
regulator (LQR) optimal control strategy.  

 
Keywords: Active vibration control, Smart composite plate, PFRC actuator optimization, Particle swarm 
optimization, Fuzzy logic control. 

 
          
1. Introduction 
 

Thin-walled composite structures have been extensively applied in various engineering fields like 
aeronautics, astronautics, automotive and military industry, robotics, sport equipment, medical 
engineering etc. due to their strength-to-weight and stiffness-to weight ratios. During exploitation, these 
structures are affected by various external disturbances causing the occurrence of undesirable vibrations, 
which can decrease performances and lead to damages. In the past decades, piezoelectric materials have 
been integrated in these structures as actuators and sensors, making together the so-called “smart 
structures”. This type of structures has the ability of adaptation to environmental conditions according to 
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the design requirements by detecting and responding to disturbances, which also includes detecting and 
reduction of undesirable vibrations (active vibration control). In order to increase actuating and sensing 
performances, piezoelectric fibers are usually stacked into a single layer composite, making the so-called 
piezo-fiber reinforced composite (PFRC) actuator and sensor, which provides high flexibility, durability 
and reliability [1]. Besides actuators and sensors, the applied control algorithm has a great impact on 
performances of smart structures. According to the previous statements, the design process of smart 
structures involves structural design of a base structure, proper sizing and placement of the actuators and 
sensors and controller design [2].              
 A large number of spacecraft structures can be modeled as a cantilever plate, like aircraft wings 
and empennages, helicopter and wind-turbine rotor blades, solar panels of spacecraft structures, flexible 
robotic manipulator, etc. Optimization of piezoelectric actuators for active vibration control of a plate has 
been studied by many researchers. The review of optimization criteria for optimal placement of 
piezoelectric sensors and actuators on smart structures is given in [3]. Kumar and Narayanan [4] 
presented the location optimization of piezoelectric actuators on steel plates by minimizing the linear 
quadratic regulator cost. Optimal locations were found by using the genetic algorithm (GA). Similar 
investigation was performed by Darivandi et al. [5], who applied the subgradient-based integer minimax 
optimization. Mentioned authors show that this optimization method is more accurate and considerably 
faster than the GA. Optimization criterion based on the controllability Gramian and GA for finding 
optimal locations of piezoelectric actuators was performed by Peng et al. [6] for aluminum plates and Han 
and Lee [7] for composite plates. Also, Han and Lee [7] considered minimizing controllability of residual 
modes in order to spillover prevention. Liu et al. [8] investigated optimal placement of piezoelectric 
actuators for active vibration control of a membrane structure by using the controllability Gramian and 
the particle swarm optimization (PSO) algorithm. They demonstrated that the computational efficiency of 
PSO is higher than that of GA. Halim and Moheimani [9] developed methodology for optimal placement 
of a collocated piezoelectric actuator–sensor pair on a plate by using modal and spatial controllability 
measures based on H2 norm. Nestorović and Trajkov [10] presented a general approach for optimal 
actuator and sensor placement on steel plates based on the method for balanced model reduction, which 
results in models with equally controllable and observable controlled modes. The optimization criteria are 
based on the H2 and the H∞ norms which are calculated for all possible actuators and sensors locations. 
Chhabra et al. [11] used the modified control matrix and the singular value decomposition approach for 
optimal placement of ten piezoelectric actuators for active vibration control of the first six modes of steel 
plates. Optimal positions of the actuators are obtained by GA maximizing the fitness function based on 
the singular value of column control matrix. Quoc et al. [12] reported finding the optimal locations of the 
five monolithic piezoelectric actuator/sensor pairs to maximize the fundamental frequencies of composite 
plates using the GA.  Also, effects of the orientations of plate layers, as well as plate geometry and 
boundary conditions on optimization results are analyzed. Daraji et al. [13] propose methodology for 
determination of the global optimal distribution of piezoelectric sensor/actuator pairs on steel plates based 
on maximum output voltage, when the structure is driven into the resonant modes. Correia et al. [14] 
implemented simulated annealing for optimal placement of eight piezoelectric actuators on composite 
plates in order to maximize the actuator performance by maximum plate deflection. Also, orientation of 
the plate layers is considered in optimization. Song et al. [15] analyzed influences of the placements of 
piezoelectric actuators and sensors on the active flutter control of composite laminated panels. All above 
mentioned papers [4-15] deal with the optimal placement of rectangular monolithic piezoelectric actuators 
with constant dimensions. Optimization problem is based on finding only the actuator location on a plate. 
Also, plates are divided into finite elements that have the same dimensions as the actuator. This allows the 
discrete optimal actuator location problem to be formulated as zero-one optimization problem. 
Orientation optimization of one monolithic piezoelectric actuator with constant dimensions on aluminum 
plate by using the Gramian controllability matrix and the fuzzy optimization strategy is presented in [16]. 
The actuator is placed at the root of the cantilever aluminum plate and optimal orientation is found for 
active vibration control of the first two modes. In paper [17], optimization of the piezoelectric actuator 
shape on composite plate is performed by minimizing the response of the system. Optimization problems 
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are solved with the use of evolutionary algorithms. The controllability index for optimal placement and 
sizing of piezoelectric patches on smart beams is given in [18]. Quek et al. [19] studied the problem of 
determining the optimal position and dimensions of piezoelectric actuator/sensor pairs on composite 
plates using two optimization performance indices based on modal and system controllability. The 
classical direct pattern search method is employed to obtain the optimal solutions. Bruant et al. [20] 
presented location and orientation optimization of piezoelectric actuators and sensors on steel plates by 
maximizing eigenvalues of the Gramian controllability and observability matrices of controlled modes 
and minimizing eigenvalues of the Gramian controllability and observability matrices for residual modes. 
Two optimization variables are considered for each piezoelectric device: the location of its center and its 
orientation. The optimization problem is solved by using the GA. The same optimization problem is 
solved by using the hybrid optimization approach based on the GA, the sequential quadratic programming 
(SQP) and the PSO combined with projected gradient techniques [21]. It is found that the solutions 
obtained by presented algorithm are better and with a better precision than those of Bruant et al. [20]. Qiu 
et al. [22] analyzed the effect of position and orientation of the piezoelectric actuators on controllability of 
bending and torsional modes of the cantilever aluminum plate. Controllability is measured by using H2 

norm. It is found that for suppressing bending modal vibration, the piezoelectric actuators should be 
located at the root of the plate, with orientation angle of 0º and for suppressing torsional vibration, the 
sensors and actuators should be located at the tip of the plate, with orientation angle of 45º. Ambrosio et 
al. [23] proposed maximizing H2 norms of the controlled modes and minimizing H2 norms of the residual 
modes for optimal placement and orientation of five piezoelectric actuators on composite plate clamped 
on three of its four sides. The GA is used to solve optimization problem. The same approach is described 
in [24] for active vibration control of simply supported aluminum plate in the cases where the first two 
modes are considered as controlled modes and the other three modes are considered as residual modes, 
and where the first three modes are considered as controlled modes and the other two modes are 
considered as residual modes. In [25] the authors used the performance index based on the Hankel 
singular values of the system and the PSO for optimization of the location and dimensions of piezoelectric 
actuators. Comparing PSO with GA, it was found that computation time of GA is about six times longer 
for 200 iterations and that GA cannot reach a good optimum point in a few iterations like the PSO. 
Optimization of positions and orientations of monolithic piezoelectric actuators for static shape control of 
beams and plates are shown in [26 - 29]. All above mentioned works [4-29] deal with the monolithic 
piezoelectric actuators. Due to their orthotropic properties, PFRC piezoelectric actuators show superior 
behavior over monolithic actuators for active vibration control. This superior behavior is presented by 
Azzouz et al. [30], where the influence of position and orientation of the monolithic and the PFRC 
piezoelectric actuator on actuation properties of the cantilever aluminum plate is investigated. It is shown 
that actuation of both bending and twisting amplitudes performed by PFRC is better compared to the 
monolithic actuator. Kapuria and Yasin performed active vibration suppression of hybrid fiber metal 
laminate (FML) rectangular [31] and skew [32] plates with integrated PFRC actuators and sensors. Top 
and bottom sides of the plates are fully covered with PFRC actuator and sensor layers, and they are 
electroded in segments and optimal orientation of each segmented part is found by plotting control 
voltages under step and impulse excitation. Paper [33] analyzes the active control of thermal buckling and 
vibration of a sandwich composite laminated plate with PFRC actuator. It is found that the critical 
buckling temperature of the structure can be maximized by optimizing the PFRC actuator fiber 
orientation. Also, the stability of the laminated composite plates can be significantly improved by 
combination of the active thermal buckling control and the vibration control strategy. Gohari et al. [34] 
investigated actuating properties of d31 and d33 PFRC actuators for shape control of simply supported and 
cantilever composite plates. Wang et al. [35] reported optimization of placement and orientation of the 
rectangular PFRC with fixed dimensions for active vibration control of a cantilever aluminum plate for 
three cases: bending control, twisting control, and coupled bending–twisting control. They also analyzed 
actuation effects of the actuators in the unimorph and the antisymmetric angle-ply bimorph 
configurations. The Gramian controllability matrix is applied as optimization criterion and optimal 
configurations are found by using the GA.  
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 Apart from locations, sizes and orientations of piezoelectric actuators, the dynamic performance 
and functionality of smart structures depend on the applied control algorithm. Reviewing the available 
works related to active vibration control of flexible structures, it can be concluded that various control 
strategies are employed. The “Classical” control algorithms such as the constant gain velocity feedback or 
the constant gain position feedback are the most commonly employed. These algorithms for active 
vibration control of plates are applied in [4, 7, 12, 15, 19, 22-24, 31, 36-41]. The Proportional-Integer-
Derivative (PID) control algorithm for active vibration control of smart flexible structures is investigated 
in [16, 42-44]. Combination of the fractional calculus and the classical control algorithm results in the 
fractional order (FO) control. Birs et al. [45] compared the integer order proportional-derivative (PD) and 
the FO PD control of flexible beam. Experimental results show that the FO PD controller is more robust 
than the integer one. The FO PD for active vibration control is also presented in [46, 47]. The FO positive 
position feedback compensator is studied in [48]. The optimal control algorithm such as the linear 
quadratic regulator (LQR) and the linear quadratic Gaussian (LQG) algorithms are also widely used for 
active vibration control of smart flexible plates [4, 5, 8, 10, 11, 13, 20, 32, 37, 44, 49-54]. The major 
disadvantage of the LQR and the LQG algorithms is the fact that they require an exact mathematical 
model of the structure. On the other side, the mathematical model used for controller design will not 
closely match the real system. The reason is ignorance of the exact parameters of materials, involving a 
number of assumptions in mathematical modeling, unmodeled dynamics or external disturbances, which 
results in that the designed controller may not achieve the desired performances and in some cases it can 
be unstable. In order to overcome this problem, some authors investigated active vibration control of 
flexible beams and plates using robust control techniques such as the H2 [55], the H∞ [56-59] and the 
sliding mode control [60]. Another alternative to cope with this problem is using the fuzzy set theory in 
controller design, which results in an intelligent robust controller with the ability to represent almost any 
deterministic controller. Nasser et al. [61] and Sharma et al. [62] investigated active vibration suppression 
of composite structures using a fuzzy logic controller (FLC). The FLC gives more flexibility to the 
designer and its main advantage is inherent robustness and ability to deal with uncertainties, imprecision 
and nonlinearities. On the other side, the precision of conventional FLC is not good and its adaptive 
ability is limited, which is especially manifested in a field of active vibration control of structures because 
external excitations make the vibrations have a stochastic nature. Wei et al. [63] demonstrated that a 
conventional FLC can suppress quickly large-amplitude to low-amplitude vibrations. Suppression of 
lower-amplitude vibrations can be achieved by change of the membership function destiny, but low- 
amplitude residual vibration cannot be damped out completely. In order to avoid this disadvantage, 
authors combined fuzzy and PI controller making a dual mode controller. Si and Li [64] overcame 
disadvantages and improved the conventional FLC performances using scaling universes of discourse 
method. Zorić et al. [65, 66] presented the optimized self-tuning FLC of smart composite beams. In the 
proposed FLC, the scaling factors of input variables (modal displacement and modal velocity) are 
adjusted via peak observer. The membership functions are parameterized and optimal configuration of 
these parameters is found using the PSO algorithm. Similar approach for self-tuning FLC is applied for 
vibration control of the magnetorheological elastomer vibration isolation system [67].  

Reviewing available articles related to the optimization of piezoelectric actuators, it can be 
concluded that, to the best of our knowledge, no study has been reported on the simultaneous 
optimization of sizing, location and orientation of the PFRC actuators on composite plates. The first part 
of this paper deals with simultaneous optimization of the sizing, location and orientation of the PFRC 
actuators on symmetric, antisymmetric cross-ply and antisymmetric angle-ply composite plates. The 
objective function is based on the Gramian controllability matrix and the optimization process is 
performed by involving the limitation of the plates masses increase. Optimal configurations are found by 
using the PSO algorithm. The detailed analysis of influences of the PFRC layer orientation and position 
(top or bottom side of composite plates), as well as bending-extension coupling of antisymmetric 
laminates on controllabilities is also performed. The experimental study is performed in order to validate 
this behavior on controllabilities of antisymmetric laminates. In the second part of the paper the active 
vibration control of smart composite plates using the PSO optimized self-tuning FLC is presented. 
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Adaptation of the control algorithm, presented by Zorić et al. [65], for active vibration suppression of 
composite plates in the multiple-input multiple-output (MIMO) manner is performed. Also, members of 
the output matrices are optimized using PSO algorithm. The Mamdani and zero-order Takagi–Sugeno–
Kang fuzzy inference methods are employed and their performances are examined and compared. The 
results obtained using the proposed PSO optimized self-tuning FLC are compared with the corresponding 
results in the case of the LQR optimal control strategy.  

 
          

2. Mathematical modeling and finite element discretization 
 

Figure 1 presents the composite plate composed of a finite number of layers of uniform thickness 
with symmetrically distributed PFRC patches on the top and bottom side. Both elastic and piezoelectric 
layers are supposed to be thin, such that a plane stress state can be assumed. After discretization by using 
the finite element method based on the third-order shear deformation theory and modal analysis [68, 69], 
the following equation in modal coordinates is obtained: 
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is the modal damping matrix, where iζ  is natural modal damping ratio of  the i-th mode. Eq. (1) can be 
expressed in a state-space form in the following way 
 
 { } [ ]{ } [ ]{ } { }AAX A X B dϕ= + +& , (3)     

 
where 
 
 

{ }X
η
η
 

=  
 &

, [ ]
[ ] [ ]

[ ]2

0 I

A

ω

 
 
 =
 
  − − Λ   

, [ ]
[ ] [ ]

[ ] [ ]T
me A

0 0

B

B K

  
  
 = = 
  

   − Ψ     

, { }
[ ]

[ ] { }T
m

0

d

F

 
 
 =
 
 Ψ 

 (4)     

 
is the state vector, the system matrix, the control matrix and disturbance vector, respectively,  
where [ ]I and [ ]0 are the appropriately dimensioned identity and zero matrix, respectively.  
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                                                Fig. 1. Composite plate with PFRC patches. 

 
2.1 Vibrational modes of cantilever composite plates 
 
 In this subsection, the quadratic cantilevers symmetric and antisymmetric cross and angle-ply 
laminated plates are considered. Dimensions of the plates are 0.5m x 0.5m and they consist of eight 
graphite-epoxy layers with the following orientations:  

 
- symmetric composite plate: (90°/0°/90°/0°)S, 
- antisymmetric cross-ply composite plate: (90°/0°/90°/0°/90°/0°/90°/0°),  
- antisymmetric angle-ply composite plate: (45°/-45°/45°/-45°/45°/-45°/45°/-45°).   
 

The thickness of each layer is 0.25mm. Material properties of the graphite-epoxy layer are presented in 
Table 1. Natural frequencies of the first six modes of plates are given in Table 2.  Modal shapes of the 
first six vibrational modes are illustrated in Figure 2 for symmetric composite plate, in Figure 3 for 
antisymmetric cross-ply composite plate, and in Figure 4 for antisymmetric angle-ply composite plate. 
For this purpose, the plates are discretized into 50x50 finite elements.    
 
                                                   Table 1 
                                                        Material properties of graphite-epoxy. 

( )1 GPaE  174 

( )2 GPaE  10.3 

( )13 GPaG  7.17 

( )23 GPaG  6.21 

12ν  0.25 

( )-3kgmρ  1389.23 

 
      Table 2 

 Natural frequencies of the first six modes of plates.   

Symmetric plate 
Mode 1 2 3 4 5 6 
Frequency (Hz) 8.628 14.54 54.069 62.908 81.181 114.663 

Antisymmetric cross-ply plate 
Mode 1 2 3 4 5 6 
Frequency (Hz) 10.369 15.747 64.949 70.531 72.474 113.226 

Antisymmetric angle-ply plate 
Mode 1 2 3 4 5 6 
Frequency (Hz) 7.012 25.814 41.186 69.696 84.667 125.914 
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      Fig. 2. Modal shapes of the first six vibrational modes for symmetric composite plate. 

 

 

 

  Fig. 3. Modal shapes of the first six vibrational modes for antisymmetric cross-ply composite plate. 
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Fig. 4. Modal shapes of the first six vibrational modes for antisymmetric cross-ply composite plate.  
 

 
3. Influence of PZT actuator orientation on controllability 
 

Controllability is a structural property and it can be defined as a system ability to control all states 
of given system. It depends of system dynamics and the location, size, orientation and number of 
actuators. For active vibration control, the controllability of the entire system is a combination of 
controllability of individual modes and it can be expressed quantitatively by using the Gramian 
controllability matrix. When structural damping is small, the controllability Gramian expressed in modal 
coordinates is diagonally dominant [70].  
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where ( )i
B  is the i-th row of matrix B   . The value of this diagonal term gives information about the 

energy transmitted from the actuators to the structure for active control of the corresponding mode. In 
order to control several modes simultaneously, Hac and Liu [70] presented the performance index: 
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[ ]( ) [ ]( )( ) ( )1/ 2 c

e C Ctrace det
N

J W W= , (6)     

 
where CN  is the number of controlled modes.  
 Controllability of composite plates, apart from dimensions of piezoelectric actuators, depends on 
its orientation, especially when the PFRC actuator is used. Due to this fact, the next aim is to examine the 
influence of the actuator layer orientation on controllability. For this purpose, the PFRC layers are 
symmetrically placed and cover the entire top and bottom side of the plate and its orientation (AΘ ) varies 
from -90º to 90º. Piezoelectric fibers of the PFRC actuator are made of PZT5A, and the actuator 
properties are given in Table 3.  
 

 Table 3 
                                                     Material properties of PFRC layer. 

( )1 GPaE  30.2 

( )2 GPaE  14.9 

( )13 GPaG  5.13 

( )23 GPaG  5.13 

12ν  0.45 

( )-3kgmρ  4600 

( )-2
31 Cme  9.41 

( )-2
32 Cme  0.166 

( )1
33 Fmk −  6.1x10-9 

 
 
3.1 Symmetric composite plate 
 

Figures 5 and 6 show diagonal terms of the Gramian controllability matrix for the first six modes 
and the performance index versus orientation angle of the actuator layer, respectively. From these figures 
it is noticeable that the diagonal terms of the Gramian controllability matrix and the performance index 
are equal for opposite orientation angles (A+Θ  and A−Θ ), due to symmetry. Also, comparing Figure 5 
and Figure 2, it can be concluded that maximal controllability for a particular mode is achieved when the 
PFRC actuator fibers are oriented in the direction of the plate deformation for this mode (0° for the 1st and 
the 3rd,  90° for the 5th and 6th, ±45° for the 2nd and ±35° for the 4th mode). Also, the controllability does 
not exist when the modal line presents symmetry of the piezoelectric actuator [71] (0° and 90° for the 2nd 
and the 4th,  90° for   the 1st and the  3rd and 0° for the 5th and the 6th mode). Due to that, the performance 
index is zero for orientations of 0° and 90°, and reaches the maximum value for orientation ±40° (Fig. 6).  
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Fig. 5. Diagonal terms of the Gramian controllability matrix for the first six modes versus orientation 
angle of the actuator layer for the symmetric composite plate. 
 

 
Fig. 6. Performance index versus orientation angle of the actuator layer for the symmetric composite 
plate. 
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3.2 Antisymmetric cross-ply composite plate 
 
 Figures 7 and 8 display diagonal terms of the Gramian controllability matrix for the first six modes 
and the performance index versus orientation angle of the actuator layer, respectively. According to the 
Figures 7 and 3, it can be concluded as in the previous case: maximum controllability is achieved when 
the PFRC actuator fibers are oriented in the direction of the plate deformation for this mode. In this case, 
it is also noticeable that the diagonal terms of the Gramian controllability matrix and the performance 
index are equal for opposite orientation angles (A+Θ  and A−Θ ), but unlike for the previous case, there is 
a significant difference, depending on whether the actuator is placed on the top or the bottom side of the 
plate. The reason for that is the bending-extension behavior of antisymmetric cross-ply composites 
(bending-extension coupling stiffnesses B11 and B22 are not zero [72]), which leads to the larger strain on 
one side of the plate than on the opposite side, resulting in non-symmetry of the controllability. Also, by 
symmetrical integration of PFRC layers, shear-extension (A16 and A26) as well as bending-twisting (D16 

and D26) coupling stiffnesses are not zero for A 0Θ ≠ o and A 90Θ ≠ o , which also contributes to non-
symmetry of the controllability. For the 1st and the 3rd mode, the controllability is higher if the actuator is 
placed at the bottom side (maximum value is reached for the orientation of 0°). This is a contribution of 
B11 bending-extension coupling stiffness. For the 4th, 5th and 6nd mode, the controllability is higher if the 
actuator is placed on the top side because B22 bending-extension coupling stiffness, which causes this 
effect, is the opposite to B11 (B22=- B11). Maximum controllability is reached for the orientation of ±70° 
for 4th mode and 90° for the 5th and the 6th mode. For the 2nd mode, controllability is slightly higher if the 
actuator is placed at the bottom side due to a small value of bending-twisting coupling stiffnesses caused 
by PFRC layers. The maximum value is reached for the orientation of ±45°. From aforementioned, it can 
be concluded that there is higher controllability when the actuator is placed on the side, where the angle 
between the actuator fibers and the fibers of the layer in contact has a larger value.  

  The value of the performance index is 0 for angles 0° and 90° (Fig. 8). It is evident, because the 
diagonal term of the Gramian controllability matrix for some modes is 0 for these angles. The 
performance index is larger when the actuator is placed at the bottom side for the angles between -35° and 
35° and a small interval around -60° and 60°. For other angles this index is larger when the actuator is 
placed on the top side. Its maximum value is reached for angles ±40° when the PFRC actuator is placed 
on the top of the plate. 
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Fig. 7. Diagonal terms of the Gramian controllability matrix for the first six modes versus orientation 
angle of the actuator layer for the antisymmetric cross-ply composite plate. 

 

 

Fig. 8. Performance index versus orientation angle of the actuator layer for the antisymmetric cross-ply 
composite plate. 
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3.3 Antisymmetric angle-ply composite plate 
 

The following analysis is performed for the cantilever antisymmetric angle-ply composite plate. 
Figure 9 presents diagonal terms of the Gramian controllability matrix of controlled modes versus 
orientation angle of the actuator layer, while Figure 10 presents the performance index versus orientation 
angle of the actuator layer.  For this type of orientatnon the same conclusion can be drawn as for two 
previous cases, the maximal controllability is reached when the PFRC actuators fibers are oriented in the 
direction of deformation for a corresponding mode (comparing Figs. 9 and 4). 

Unlike in the previous case, diagonal terms of the Gramian controllability matrix are not symmetric 
with respect to orientation angle, especially for the 2nd and the 5th mode. Better controllability is achieved 
when fibers orientation of the actuator layer is opposite the orientation of the layer in contact (in relation 
to the x axis). Again, the reason is bending-extension coupling (bending-extension coupling stiffnesses 
B16 and B26 are not zero [72]). Also, by symmetrical integration of PFRC layer, shear-extension (A16 and 

A26), as well as bending-twisting (D16 and D26) coupling stiffnesses are not zero for A 0Θ ≠ o and 

A 90Θ ≠ o , which also contributes to non-symmetry of the controllability. It is noticeable that when the 

actuator is orientated at the angle of A+Θ , controllability at the top of the plate is equal to controllability 

when the actuator is set at the angle of A−Θ  at the bottom of the plate, and vice versa. Thus, maxium 
controllability for the 2nd mode is achieved if the actuator is placed at the bottom side with the orientaton 
of -45º (or on the top side with the orientation of 45º), and for the 5th mode if the actuator is placed at the 
bottom side with the orientaton of -55º (or on the top side with the orientation of 55º). For the 4th mode, 
controllability reaches maximum for the orientations of ±90º and minimum for the orientation of 0º. This 
minimum controllability for 0º is not 0, because of the coupling stiffnesses of PFRC layers. Also, due to 
coupling stiffnesses, maximum controllabilities for the 1st and the 6th mode are not for the orientation of 
0º, but for ±5º (depending on the location of the actuator).             
 From Figure 10 it can be concluded that the performance index reaches the highest value for the 
angle of 25° in the case when the actuator is positioned on the top side and for the angle of -25° in the 
case when the PFRC actuator is placed at the bottom side of the plate. 
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Fig. 9. Diagonal terms of the Gramian controllability matrix for the first six modes versus orientation 
angle of the actuator layer for the antisymmetric angle-ply composite plate. 
 

 
Fig. 10. Performance index versus orientation angle of the actuator layer for the antisymmetric angle-ply 
composite plate. 
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4. Optimization of the sizing and orientation of PFRC actuators 
 

One of the goals of this paper is to find the positions, sizes and orientation of selected number of 
PFRC actuators for achieving maximum controllability. Since integration of these actuators leads to the 
increasing of the plate mass, appropriate constraints will be involved. Figure 11 presents the cantilever 
composite plate with the integrated i-th actuator, where a  and b  are dimensions of the plate, ix  and iy  

present the actuator center position with respect to the coordinate system of the plate, ia  and ib  are 

dimensions of the actuator, and AiΘ  is its orientation. The actuator and sensor patches are symmetricaly 
placed (each sensor has equal size, position and orientation as the corresponding actuator, but it is placed 
on the opposite side of the plate).     
 

 
 
                                        Fig. 11. Composite plate with the i-th PFRC actuator. 
 
 
Constraints of the optimization problem can be defined as follows 

− position constraints: 
 

 A B D E A B D E P0 , , , , 0 , , , , 1, ,i i i i i i i ix x x x a y y y y b i N≤ ≤ ≤ ≤ = K , (7)     
 
 where PN  presents the number of piezoelectric actuators; 

− constraints limiting the increase of the entire surface mass can be represented by the coverage of 
the plate surface: 

 
 

1

PN

i i
i

a b

ab
ε= ≤

∑
, 

(8)     

 
 where ε  presents the tolerance of the surface coverage; 

− dynamic constraints which do not allow the overlapping of the actuators. 
 
Taking into account the defined constraints, the objective function can be formulated as follows 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 ( ) e
e e

, if  constraints  are  not  violated
maximize ,

0, if  any  constraint  is  violated

J
OBJ J J


= = 


. (9)     

 
The presented optimization problem will be solved using the Particle swarm optimization method [73]. 
According to variables which define the size, position and orientation of each actuator, the i-th particle in 
the k-th iteration is defined by the following coordinates 
 
 

P P P P P

1 1 1 1 A1

A

k k k k k
i i i i i

k
i

k k k k k
N i N i N i N i N i

x y a b

p

x y a b

 Θ 
   =
   

 Θ
 

M M M M M . (10)     

 

A particle changes its position and velocity in the following way 
 
 ( ) ( )1

1 1 2 2

1 1
POP, 1, , 1, ,

k k k k
id id id id d id

k k k
id id id

v v c rand lbest p c rand gbest p

p p v i n d m

χ+

+ +

= + − + −

= + = =K K

, (11)     

 
where χ  is inertia weight, 1c  and 2c  are the cognition and the social learning factors, respectively, 

1rand   and 2rand  are random numbers between 0 and 1, POPn  is the number of the population, m  is 

the population size, and lbest  and gbest  are the best local and global positions of the particle, 
respectively. For the actuator sizing and placement it is found that the best solution is obtained when the 
cognition and social learning factors are set to be 1.5 [2].   
 In forward numerical examples, the number of actuators is set to be 5, which leads to 25 
parameters that have to be determined during optimization process. Analyzing the controllabilities for 
particular modes (Figs. 5, 7 and 9), it can be inferred that some modes have maximum controllability for 
the orientation of 0º, and some for the orientation of 90º. In order to reduce the number of optimization 
parameters, which will lead to the increase of computing effectiveness, the positions of three actuators are 
fixed: the first two actuators have equal dimensions, they are placed at the root of the plate and orientated 
with 0º; the third actuator is placed in the middle of free end of the plate and orientated with 90º (Fig. 12). 
The number of parameters is reduced from 25 to 14. Thus, coordinates of the i-th particle in the k-th 
iteration can be written as follows 
 
 

1 2 14
k k k k
i i i ip p p p   =

   
K , (12)     

 
 In the case of the antisymmetric cross-ply plate, the first two actuators are placed at the bottom of 
the plate. The third actuator is at the top of the plate. If the orientation of the 4th and the 5th actuators is 
between -35º and 35º, they will be placed at the bottom side and in other cases at the top of the plate.    
 For the antisymmetric angle-ply plate, the first three actuators are placed at the top of the plate. 
The other two actuators will be placed at the top side for positive orientation and 0º, and at the bottom 
side for negative orientation.    
 The tolerance of the surface coverage is set to be 0.15 (15% of the surface is covered by PFRC 
patches). 
 Sizes, positions and orientations of the piezoelectric actuators are shown in Figure 13 and Table 
4. Regarding the obtained angles of orientations of the 4th and 5th actuators for the antisymmetric cross-
ply and the antisymmetric angle-ply plate, they are placed on the top side of these plates. Table 5 presents 
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diagonal values of the Gramian controllability matrix and performance index for the obtained solutions. 
Besides obtained configuration for the antisymmetric cross-ply plate cases (the first two actuators at the 
bottom side, and the other three on the top side), when all five actuators are placed on the top and at the 
bottom side of the plate, are also given (Table 5) in order to compare these results and show that obtained 
configuration leads to better controllability compared to the situation when all actuators are on one side of 
the plate.           
 

 
                                      Fig. 12. Optimization parameters of PFRC actuators. 
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Fig. 13. Sizes, locations and orientations of the actuators obtained by optimization. (a) Symmetric plate; 
(b) Antisymmetric cross-ply plate; (c) Antisymmetric angle-ply plate. 
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Table 4 

                                 Sizes, positions and orientations of piezoelectric actuators. 

 Symmetric 
plate 

Antisymmetric 
cross-ply plate 

Antisymmetric 
angle-ply plate 

)(1 mmp  96 108 88 
)(2 mmp  72 80 80 
)(3 mmp  145 142 128 
)(4 mmp  80 72 56 
)(5 mmp  246 296 207 
)(6 mmp  92 150 83 
)(7 mmp  93 79 130 
)(8 mmp  65 68 64 

)(9
op  -34 -27 0 

)(10 mmp  385 142 371 

)(11 mmp  393 368 375 
)(12 mmp  99 75 124 
)(13 mmp  60 56 63 

)(14
op  45 41 0 

 
Table 5 
Diagonal values of the Gramian controllability matrix and performance index obtained by the PSO 
optimization. 

 
Symmetric 

plate 

Antisymmetric cross-ply plate 
Antisymmetric 
angle-ply plate Obtained 

configuration 
All actuators at 

the top side 
All actuators at 
the bottom side 

( )3
C11 10W −×  0.0148 0.0242 0.0167 0.0242 0.0198 

( )3
C22 10W −×  0.0392 0.0512 0.037 0.0512 0.0354 

( )3
C33 10W −×  0.0517 0.0809 0.0586 0.0775 0.1443 

( )3
C44 10W −×  0.1137 0.1929 0.1929 0.1368 0.079 

( )3
C55 10W −×  0.1977 0.1196 0.0837 0.1194 0.134 

( )3
C66 10W −×  0.1884 0.1736 0.1532 0.1414 0.2596 

( )610eJ −×  5.1 5.954 4.424 4.861 6.041 
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5. Experimental study 
 
 For experimental validation of theoretical and numerical results obtained about controllabilities, 
the cantilever antisymmetric cross-ply composite plate, made of two 400g/m2 unidirectional carbon layers 
with orientations (90°/0°) (from bottom to top) is considered. Dimensions of the plate are 200 mm x 200 
mm. The number of actuators is one, whereas the first three natural modes are considered as controlled 
modes. The selected PFRC actuator is M8514-P2 made by “Smart Materials Corp.” 
 The optimal position and orientation of the PFRC actuator is presented in Figure 14. Since 
obtained orientation is 0°, it is placed at the bottom side of the plate. In order to validate the influence of 
the bending-extension coupling on controllability, another actuator is placed on the top of the plate, 
symmetrically to the previous one (Figure 15). 
 
 
 

 
                    Fig. 14. Optimal position and orientation of the M8514-P2 PFRC actuator. 

 

 
 

                      Fig. 15. The composite plate with integrated M8514-P2 PFRC actuators. 
 

 In order to compare controllabilities of the actuators, the sine test is performed. Each actuator is 
driven by sine signal generated by a signal generator around the 1st, 2nd and 3rd natural frequencies             
and the response is measured by acellelometer positioned at the corner of the free side of the plate (Figure 
16). The actuator with better controllability of a particular mode will cause better ecxitation of this mode. 
Maximum allowable voltage for M8514-P2 PFRC actuator is -60V - +360V. In this case, the actuators 
will be symmetrically loaded, between -60V - +60V. The custom-made voltage amplifier is employed to 
amplify the voltage from a signal generator. The experimental setup is presented in Figure 17.   
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                                 Fig. 16. Schematic diagram of the experimental setup. 
 
 
 

 
 
                                                        Fig. 17. The experimental setup. 
 
 Figure 18 presents peak-to-peak voltages of the output signal obtained by excitation of each 
actuator for frequencies around the 1st, the 2nd and the 3rd modes. 
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              Fig. 18. Peak-to-peak voltages of the output signal for the 1st, the 2nd and the 3rd modes.  
 

 From Figure 18 it can be concluded that the actuator placed at the bottom of the plate provides 
better controllability for all three modes, which verifies the results obtained from numerical analysis.   
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6. Optimized self-tuning fuzzy logic control 
 

Particle swarm optimized self-tuning logic controller is shown in [65], where the membership 
functions for both the Mamdani and the zero-order TSK inference method were parameterized and the 
parameters were found by using the Particle swarm optimization. Main idea of this control algorithm is 
tuning of the scaling factors of modal displacement ( dK ) and modal velocity ( vK ) during active 
vibration suppression through the self-tuning mechanism based on peak observer (modal displacement     
(η ) and modal velocity (η& ) are state variables). The scaling of inputs is performed in the following way:  

 

 dE K η= , vEC K η= & , (13)     
 
where E  and EC  present the error and the error derivative in the fuzzy set, respectively. The peak 
observer is constructed for each state variable and it monitors amplitudes and the increase of amplitudes 
of the state variable and calculates its rates. When the state variable reaches its peak, the corresponding 
scaling factor is tuning in the parameter regulator in a manner that input in the fuzzy logic controller is in 
the [-1 1] range. The objective function used in this issue is maximization of the ratio of the first ( max1η ) 

and the second (max 2η ) amplitude of the modal displacement: 
 
 max1

max 2
maximizeFOBJ

η
η

=  (14)     

 
 However, increasing of the scaling factors during active vibration suppression results in the big and 
strong control force when the amplitude becomes too small, which can lead to control instability such as 
spillover. In order to overcome this problem, self-tuning FLC is combined with the LQR making the 
composite controller. The controller is switched from self-tuning FLC to LQR when the amplitude drops 
to 20% value of the maximum amplitude.     
 Numerical examples are provided for free vibration control of symmetric cantilever composite 
beam with layers orientation  (90°/0°/90°/0°) and one integrated piezoelectric actuator for both single 
mode and multi-modal responses (first three modes). From these examples it can be inferred that the 
membership functions for both the Mamdani and the zero-order TSK inference method do not depend on 
the initial conditions and change of initial values of the scaling factors has very little impact on the control 
system performances. Comparing the PSO optimized self-tuning FLC with the FLC with constant factors 
and the LQR optimal control, it is found that proposed control algorithm leads to better vibration 
suppression. Also, the zero-order TSK inference method is more effective than the Mamdani inference 
method. 
 The goal of the paper is to adapt this PSO optimized self-tuning FLC for active vibration 
suppression of composite plates in the multiple-input multiple-output (MIMO) manner. Numerical 
simulation will be performed for the active vibration control of the first six modes of above presented 
cantilever symmetric, antisymmetric cross-ply and antisymmetric angle-ply composite plates with 
actuators configurations obtained by optimization. Unlike the case from paper [65], in this simulation the 
scaling factors will become constant when the amplitude drops to 20% value of the maximum amplitude 
(instead of switching on the LQR). A block diagram of the self-tuning FLC is presented in Figure 19, 
while Figure 20 presents a block diagram of the i-th modal subsystem (M. S. i). The optimization is 
performed for initial values obtained with impulse load of 500N with duration of 0.1ms at the point A of 
each plate (Figure 21). Initial values of the scaling factors are set to be zero ( ( )(0) 0, 0 0d vK K= = ). The 

maximum allowable voltage for each actuator is 200V ( act 200VK = ). Optimization is performed for 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

each mode, independently, with all five actuators fully loaded. The number of population in PSO is 300 
and the number of iterations is 500.  
 
 

 
         Fig. 19. Block diagram of self-tuning FLC (S. E. – State estimator; M. S. – Modal subsystem). 
 

 
                           Fig. 20. Block diagram of the i-th modal subsystem (M. S. i).      
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                                                 Fig. 21. Action of impulse load at the plate.       

 
 

Obtained parameters iα , iβ , iγ  and the objective function value of each mode for the Mamdani 
inference method are presented in Table 6. According to obtained parameters, the membership functions 
of inputs and output for this case are depicted in Fig. 22. Table 7 presents obtained parameters 1α , 1β  
and the objective function value of each mode for the zero-order TSK inference method, while the 
membership functions of inputs are illustrated in Fig. 23. Analyzing parameters in Table 6 and Table 7, it 
can be inferred that the same corresponding parameters have the same value. In other words, obtained 
membership functions are the same for each mode and for each plate for both Mamdani and zero-order 
TSK inference methods. Comparing Table 6 with Tables 4 and 17 in paper [65], as well as Table 7 with 
Tables 14 and 18 in the same paper, it can be concluded that this membership functions have the same 
value for the first three modes in the case of Mamdani inference method and for the first two modes in the 
case of the zero-order TSK inference method. Also, obtained inference rules for each mode of each plate 
for the zero-order TSK inference method have the same value and they are presented in Table 8. 
Comparing Table 8 with Tables 15 and 19 in paper [65] it can be stated that the same values of inference 
rules are obtained.     
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            Table 6 
            Optimized  parameters iα , iβ , iγ  and the objective function value (Obj.) of each mode for  
            the self-tuning FLC based on the Mamdani inference method obtained by the PSO.   

Symmetric plate 
Mode 1 2 3 4 5 6 










2

1

α
α

 








991.0

1
 









991.0

1
 









991.0

1
 









991.0

1
 









991.0

1
 









991.0

1
 










2

1

β
β

 








278.0

384.0
 









278.0

384.0
 









278.0

384.0
 









278.0

384.0
 









278.0

384.0
 









278.0

384.0
 










2

1

γ
γ

 








812.0

1
 









812.0

1
 









812.0

1
 









812.0

1
 









812.0

1
 









812.0

1
 

Obj.  1.1359 1.1114 1.125 1.091 1.0763 1.0786 
Antisymmetric cross-ply plate 

Mode 1 2 3 4 5 6 










2

1

α
α

 





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

2

1

β
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
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






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384.0
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






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 








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






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




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

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

812.0

1
 

Obj. 1.1544 1.1136 1.2857 1.0716 1.076 1.0677 
Antisymmetric angle-ply plate 

Mode 1 2 3 4 5 6 
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Obj. 1.2165 1.0796 1.5994 1.0531 1.1023 1.2008 
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Fig. 22. Membership functions for the zero-order TSK inference method. (a) The input - error; (b) The 
input - error derivative; (c) The output. 

 

           Table 7 
            Optimized  parameters 1α , 1β  and the objective function value (Obj.) of each mode for  
            the self-tuning FLC based on the zero-order TSK inference method obtained by the PSO.   

 
 
 
                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Symmetric plate 

Mode 1 2 3 4 5 6 

α1 1 1 1 1 1 1 
β1 0.16 0.16 0.16 0.16 0.16 0.16 
Obj. 1.2804 1.222 1.2559 1.1721 1.1397 1.1459 

Antisymmetric cross-ply plate 

Mode 1 2 3 4 5 6 

α1 1 1 1 1 1 1 
β1 0.16 0.16 0.16 0.16 0.16 0.16 
Obj. 1.3268 1.2271 1.7157 1.1354 1.1397 1.1314 

Antisymmetric angle-ply plate 

Mode 1 2 3 4 5 6 

α1 1 1 1 1 1 1 
β1 0.16 0.16 0.16 0.16 0.16 0.16 
Obj. 1.4982 1.1514 3.3392 1.0972 1.2004 1.4638 
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                               Table 8 
                                Inference rules of each mode for the self-tuning FLC based on the zero-order TSK                       
                               inference method obtained by the PSO. 

Symmetric plate 
 EC 

NB NS ZE PS PB 

E 

NB 1 1 0.992 0.259 0.183 
NS 0.979 0.221 0.22 -0.247 -0.519 
ZE 0.953 0.282 0 -0.282 -0.953 
PS 0.519 0.247 -0.22 -0.221 -0.979 
PB -0.183 -0.259 -0.992 -1 -1 

Antisymmetric cross-ply plate 
 EC 

NB NS ZE PS PB 

E 

NB 1 1 0.992 0.259 0.183 
NS 0.979 0.221 0.22 -0.247 -0.519 
ZE 0.953 0.282 0 -0.282 -0.953 
PS 0.519 0.247 -0.22 -0.221 -0.979 
PB -0.183 -0.259 -0.992 -1 -1 

Antisymmetric angle-ply plate 

 EC 
NB NS ZE PS PB 

E 

NB 1 1 0.992 0.259 0.183 
NS 0.979 0.221 0.22 -0.247 -0.519 
ZE 0.953 0.282 0 -0.282 -0.953 
PS 0.519 0.247 -0.22 -0.221 -0.979 
PB -0.183 -0.259 -0.992 -1 -1 

 
 

 
Fig. 23. Membership functions for Mamdani inference method. (a) The input - error; (b) The input - error 
derivative. 
 
 
6.1 Optimization of output matrix for MIMO application     
 
 Since optimization is performed for each mode independently with fully loaded actuators, fully 
loaded actuators for each mode in simultaneous control of the first six modes cannot be applied because 
maximum applied voltage will exceed 200V, which leads to depolarization of PZT material. Therefore, it 
is necessary to select the output matrix ([ ]W ). In this paper this matrix will be found by using the PSO 

algorithm. The objective function is defined as       
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max1

max 2

max1

max 2 max
1,..,6

maximize min i
W

i
i

OBJ

η
η

η
η
=

 
   
   

   =    
        
 

, (15)  

 

where max1

max 2 i

η
η

 
 
 

 presents the ratio of the first and the second amplitude of modal displacement of 

the i-th mode, while  max1

max 2 maxi

η
η

 
 
 

 presents the maximum ratio of the first and the second 

amplitude of modal displacement of the i-th mode obtained when all actuators are fully loaded (these 
values are given in Tables 6 and 7). Constraints are regarded to the maximum applied voltage at the 
actuator 
 
 

AA max
200V, =1, ,5j jΦ ≤ K . (16)  

 
Considering defined constraints, the objective function can be written as 
 

( )
max1

max 2

max1

max 2 max
1,..,6

maximize ,

min , if  constraints  are  not  violated

0, if  any of  the constraints  is  violated

W W

i

W

i
i

OBJ J

J

η
η

η
η
=

=

   
   

   
   =        




.
 (17)     

 
According to the optimization statements, the i-th particle in the k-th iteration is defined by the following 
coordinates 
 
 , 1, ,6, 1, 5k k

i mn ip W m n   = = =
   

K K . (18)     

 
In order to increase computation effectiveness, initial population is generated by setting their range 

according to the matrix B    that is presented in Table 9 for each configuration of plates. According to the 

values in these matrices, the initial population is chosen in the way in which a larger value of 
controllability of a particular mode by a particular actuator implies a larger value of corresponding 
member of the output matrix[ ]W . The initial values for each configuration of plates are presented in 

Table 10. Obtained values are shown in the next subsection, where control performances of the PSO-
optimized fuzzy logic control will be analyzed.       
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                        Table 9 
                        Matrix B    for each configuration of plates.  

 ( )310B −  ×   

Symmetric plate 

1.7234 1.7864 0.0636 0.4109 0.1088

3.4777 3.2990 0.0205 1.9786 1.7422

7.7103 7.0136 2.1983 4.9142 1.1116

10.9496 11.8344 0.3721 6.5562 8.2981

2.7150 2.9872 27.0033 5.4953 5.5988

11.1649 12.5939 23.7795 4.3202 14.788

− − − −
− −

− − −
− −

− − − 5

 
 
 
 
 
 
 
 
  

 

Antisymmetric 
cross-ply plate 

2.5132 2.4353 0.0999 0.4431 0.3381

4.3612 4.3648 0.0344 1.6662 1.3873

9.6353 9.9712 6.0049 5.4275 0.6359

2.7837 1.9586 25.4528 4.8027 3.3711

13.9086 14.2546 1.2840 6.5760 1.4028

13.7066 13.3055 23.8801 0.5615 6.92

−
− − − −

− −
− −

− − −
− − − − 18

 
 
 
 
 
 
 
 
  

 

Antisymmetric 
angle-ply plate 

1.6125 1.4463 0.2107 1.4508 0.4805

4.6956 4.8513 0.3166 0.8696 0.4298

8.4390 9.0663 3.5493 8.8357 7.9166

0.8639 0.3404 15.8909 4.7568 2.0950

12.5398 14.1052 1.9419 13.8924 4.8362

16.2911 17.5060 1.3064 19.2859 26

− − − −
− − −

− − −
− − −

− − −
− .9088

 
 
 
 
 
 
 
 
  
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                        Table 10 
                        Initial values of output matrix  [ ]W  for each configuration of plates.  

 Initial [ ]W  

Symmetric plate 

0.4 0.8 0.4 0.8 0 0 0.1 0

0.3 0.7 0.3 0.7 0 0.1 0.5 0.2 0.3

0 0.2 0 0.2 0 0.1 0.4 0.5 0.1 0.3

0.1 0.2 0.1 0.2 0 0.1 0.4 0.5 0.8

0 0.1 0 0.1 0.4 0.7 0.2 0.4 0.1 0.3

0 0.2 0 0.2 0.4 0.7 0 0.1 0.5

− − − 
 − − − − 
 − − − − −
 − − − − 
 − − − − −
 

− − − −  

 

Antisymmetric 
cross-ply plate 

0.3 0.7 0.3 0.7 0 0.1 0.3 0

0.3 0.7 0.3 0.7 0 0 0.3 0.1 0.5

0 0.3 0 0.3 0 0.1 0.5 0.8 0 0.1

0 0.1 0 0.1 0.5 1 0 0.2 0.1 0.4

0.1 0.3 0.1 0.3 0 0.1 0.3 0 0.5

0.1 0.2 0.1 0.2 0.3 0.6 0 0.3 0.7

− − − 
 − − − − 
 − − − − −
 − − − − − 
 − − − −
 

− − − −  

 

Antisymmetric 
angle-ply plate 

0.4 0.7 0.4 0.7 0 0.1 0.3 0

0.3 0.8 0.3 0.8 0 0 0.2 0

0 0.5 0 0.5 0.4 0.7 0.3 0.6 0.3 0.6

0 0 0.5 1 0.1 0.3 0 0.2

0.1 0.3 0.1 0.3 0 0.2 0.7 0.1 0.5

0.1 0.4 0.1 0.4 0 0.3 0.7 0.4 0.8

− − − 
 − − − 
 − − − − −
 − − − 
 − − − −
 

− − − −  

 

 
 
7. Active vibration control analysis 
 

Obtained values for the output matrix [ ]W  as well as the maximum applied control voltages on 

each actuator are presented in Table 11 for the symmetric plate for both Mamdani and zero-order TSK 
inference method. In order to compare the optimized self-tuning FLC with one of the most used 
conventional controllers – LQR, the weighting matrices [ ]Q  and [ ]R  are found using the trial and error 

method keeping maximum applied control voltages to the actuators below 200 V. These matrices along 
with maximum applied control voltages are also presented in Table 11. These results for antisymmetric 
cross-ply and angle-ply composite plates are given as supplementary material.  In all cases the scaling 
factors become constant when the amplitude drops to 20% value of the maximum amplitude. 
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             Table 11                 

 Optimized output matrix  [ ]W  for the Mamdani and the TSK inference methods, matrices [ ]Q  

and  [ ]R  for the LQR control and maximum applied control voltage for the symmetric composite 

plate.  

Mamdani 

[ ]

0.7296 0.7602 0 0.0019 0

0.582 0.61 0 0.4395 0.2143

0.1194 0.1258 0.0978 0.4351 0.2374

0.1826 0.1909 0 0.3697 0.7805

0.0442 0.0448 0.5817 0.386 0.2323

0.022 0.0245 0.6491 0 0.4286

W

 
 
 
 

=  
 
 
 
  

 

AA1 max
200.00VΦ =  

AA2 max
200.00VΦ =  

AA3 max
199.80VΦ =  

AA4 max
197.13VΦ =  

AA5 max
198.54VΦ =  

TSK 

[ ]

0.4973 0.4595 0 0.0649 0

0.3832 0.354 0 0.1153 0.321

0.0229 0.0212 0.0116 0.4801 0.1288

0.1124 0.1039 0 0.1644 0.5049

0 0 0.4976 0.2246 0.1335

0.1108 0.1005 0.4975 0 0.1374

W

 
 
 
 

=  
 
 
 
  

 

AA1 max
200.00VΦ =  

AA2 max
199.87VΦ =  

AA3 max
199.82VΦ =  

AA4 max
199.97VΦ =  

AA5 max
200.00VΦ =  

LQR 

[ ] [ ]6
12 1210 IQ ×=  [ ]

1.6 0 0 0 0

0 1.5 0 0 0

0 0 2.2 0 0

0 0 0 1.5 0

0 0 0 0 1

R

 
 
 
 =
 
 
  

 

AA1 max
197.33VΦ =  

AA2 max
199.75VΦ =  

AA3 max
197.88VΦ =  

AA4 max
200.00VΦ =  

AA5 max
198.45VΦ =  

 
 Comparison of control performance of the PSO optimized self-tuning FLC based on the Mamdani 
and zero-order TSK inference methods and the LQR optimal control for the symmetric composite plate is 
presented in Figure 24, where the displacement history of the point A for multimodal response of the plate 
is depicted. Figure 25 shows a single-mode response of the point A for each controlled mode. It can be 
inferred from Figure 24 that the PSO-optimized self-tuning FLC leads to better vibration suppression 
compared to LQR optimal control and the zero-order TSK inference method has better performances than 
the Mamdani inference method. The same conclusion can be drawn from Figure 25, especially for lower 
modes (1st and 2nd). For higher modes (3rd – 6th), LQR optimal control provides lower amplitudes at the 
beginning of vibration suppression, but it also provides higher settling time. Control voltages in the 
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multimodal response of each actuator for each control algorithm, as well as deflection of point A of the 
antisymmetric cross-ply and angle-ply composite plates are given as supplementary material.  
 

 
 
                Fig. 24. Deflection of point A of the symmetric composite plate for the multimodal response.       
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Fig. 25. Deflection of point A of the symmetric composite plate for the single mode responses: (a) 1st 
mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode and (f) 6th mode.       
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8. Optimization procedure: summary  
 
 The optimization procedure presented in this paper can be summarized using the flowchart as 
illustrated by Figure 26.   

 
                                            Fig. 26. Flowchart of the optimization procedure.  
 
9. Conclusions 
 
 In this paper, optimization of the sizing, location and orientation of PFRC actuators and the active 
vibration control of smart composite plates using the particle-swarm optimized self-tuning fuzzy logic 
controller is studied. Numerical analysis is performed for active vibration control of the first six modes of 
the cantilever symmetric ((90°/0°/90°/0°)S), antisymmetric cross-ply ((90°/0°/90°/0°/90°/0°/90°/0°)) and 
antisymmetric angle-ply ((45°/-45°/45°/-45°/45°/-45°/45°/-45°)) composite plates.  

The analysis of influence of the PFRC actuator layer orientation and position (top or bottom side 
of the plates) on the Gramian controllability matrix shows that there is a significant difference, depending 
on whether the actuator is placed on the top or the bottom side of the antisymmetric plates. The reason is 
the presence of the bending-extension coupling stiffnesses in this type of laminates. It can be concluded 
that higher controllability is achieved in the case when the actuator is placed on the side where the angle 
between the actuator fibers and fibers of the layer in contact has a larger value. The experimental study is 
performed in order to validate such behavior of antisymmetric plate.  This fact is taken into account for 
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optimization of the sizing, location and orientation of five PFRC actuators, which is also performed in the 
paper. Optimal configurations are found by using the PSO algorithm that involves the limitation of the 
plates masses increase.  

Optimization of the membership functions parameters of the self-tuning fuzzy logic controller is 
performed by applying PSO algorithm for each mode of each plate independently for both the Mamdani 
and the zero-order Takagi–Sugeno–Kang fuzzy inference methods. Comparing the obtained membership 
functions, it can be concluded that they do not depend on controlled mode and plate configuration. In 
other words, the membership functions of certain input or output are equal for each mode of each plate, 
although they do not have the same material characteristic (because of layers orientations) or the 
positions, sizes and orientations of actuators. Also, they are equal to corresponding membership functions 
obtained for active vibration control of cantilever composite beam presented in [65], although they are a 
different type of structures, and optimization is performed under different initial conditions and different 
initial values of the scaling factors. Considering these facts, it is arrived at the conclusion that one of the 
main problems that occurs in the FLC design has been overcome by using the presented algorithm: tuning 
of the membership functions, especially in the cases when material and loading characteristics of the 
structures can be determined exactly. Furthermore, the output matrices are found by applying the particle 
swarm optimization. Also, it is found that the proposed control algorithm shows better performances and 
leads to better vibration suppression compared to LQR optimal control.  

Further step involves implementation of the presented control algorithm for active vibration 
control in more complex and real structures, as well as experimental investigation.  
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plates 
-Analyzis of influence of PFRC fiber orientation on controllability of composite plates 
-Active vibration control of smart composite plates using self-tuning fuzzy logic controller 
-Optimization of membership functions and output matrices using Particle swarm 
optimization algorithm 
 
 
  


