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Summary. This communication presents a novel nonlocal fractional order viscoelastic model of nanorod. The main assumptions for the 

proposed model are discussed. Solution of the motion equation involving fractional order derivative is presented. Influences of a nonlocal 

parameter and fractional order derivative on the free damped vibration of nanorod are presented through numerical examples.    
 

Introduction 
 

Nanostructure materials are widely examined by scientists due to the rising need for application in nanosensors, 

nanoactuators, nanoopto-mechanical systems, nanoelectro-mechanical devices etc. Such based new materials offer 

considerable benefits compared to conventional materials. The nonlocal theory of Eringen shown to be very efficient in 

modelling of nanostructures and incorporates the atomic forces and internal length scale into a model [1]. 

Nanorods can be grown using various methods within the range from 1 to 100 nanometers. Several types of grown 

materials can be considered to have a nanorod structure. Here we mention only carbon nanorods (multi-wall carbon 

nanotubes), boron nitride and zinc oxide nanorods. In such small systems it is necessary to take into account small-scale 

(nonlocal) effects. Vibration analysis of nanorods is significant for the application of these systems in engineering 

practice. Therefore, the nonlocal theory and classical methods used in vibration analysis of macro structures can be 

employed in order to investigate the vibration behavior of nanorods. However, nonlocal elasticity models of nanorods 

do not take in to account structural damping, thus nonlocal viscoelastic constitutive relations need to be considered [2]. 

There are many linear viscoelastic models available in the literature such as Kelvin-Voight, Maxwel and Standard 

Linear Solid. These models are originally given with integer order derivatives and in some cases, too many physical 

parameters are needed to fit experimental results. In order to reduce the number of parameters one may introduce 

modified linear viscoelastic models involving fractional order derivatives. Such models can pronounce more elastic or 

viscous behavior by changing the order of fractional derivative. 

There are many definitions of fractional derivatives available in the literature [3]. The Riemann-Liouville definition 

is used very often in viscoelastic models of structures [4]. Deficiencies of this definition such as fractional order initial 

conditions with questionable physicality can be avoid under certain assumptions. Solutions of fractional order 

differential equations can be find using analytical methods or numerical approximation methods depending of the 

problem under consideration [5]. 

In this work, we analyzed the free vibration of a nonlocal viscoelastic nanorod. Equation of motion of the system 

which includes the small-scale effects is derived using D’ Alembert’s principle with nonlocal Kelvin-Voight constitutive 

relation involving fractional order derivatives. The system is analyzed for clamped-free (C-F) boundary conditions. Solution 

of partial differential equation is proposed in the form of separation of variables. Obtained fractional order differential 

equation in terms of a time function is solved using the Laplace transform method. Solution of the equation in the Laplace 

domain is expanded into a convergent series and using inverse Laplace transform presented into the time domain. 
 

Constitutive equation of a nonlocal fractional order viscoelastic model 
 

Using the operator D   for the left Riemann-Liouville derivative [2] we can write the modified Kelvin-Voigt 

constitutive relation for uniaxial deformation of one dimensional structure which takes into account nonlocal effects and 

involves fractional order derivative of a strain in the form  
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0e a  is nonlocal parameter, a  denotes internal characteristic length, 0e  is material constant,  and   are 

nonlocal stress and strain , 0E  and 0  are elastic modulus and relaxation time, respectively. 

 

Motion equation  

 

Let as consider a C-F nanorod of a length L  and constant cross sectional area A  along the x  coordinate. Material of 

the nanorod is homogenous. We assume the free longitudinal vibration of a nanorod in x  direction. Force N  is 

resultant of an axial stress   acting internally on A  and p  is the axially distributed force which results from external 

forces. After taking into account equilibrium of forces in x  direction and Eq. (1) we obtain motion equation expressed 

in terms of displacement u  of the form 
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where 0c E   is wave propagation velocity and  is density of a nanorod. We assume the solution of the Eq. (2) as 

1
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  with nX  denoting the amplitude function and nT  denoting the time function. The mode shape solutions 

for the C-F nanorod are similar to those obtained for a classical C-F rod. However, solution of the differential equation 

in terms of a time function differs from the solution for a classical rod. The fractional order differential equation for the 

time function is of the form 
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0 nc   and where n , 1,2,...,n   are characteristic values which are obtained from 

characteristic equation and corresponding boundary conditions. To solve Eq. (3) one may use numerical approximation 

methods or some of the analytical methods available in the literature [3]. Here, we applied Laplace transform method. 

Obtained solution in the Laplace domain is expanded into the convergent series [4, 5]. Then, using inverse Laplace 

transform we obtained the solution for the time function in time domain and for the n-th mode as follows 
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where m f d , 2

0v d  and 0T and 0T  are initial conditions. For the fractional order initial conditions appearing in 

the Laplace transform of fractional derivative it is assumed that are equal to zero. On Figs. 1 a) and b). are plotted  

values of time function in time t  for different values of  and  . Numerical examples are performed for the following 

values of parameters: 1n  , 1.1L  [nm], 0 0.001  [ns
α
], 0 1.1E  [TPa], 2300  [kg/m

3
] and 0 0 2e a   [nm]. 

         a)      b)  

Fig. 1. Values of time functionT  in time t  for a) different values of  , b) different values of  . 

Conclusions 

From presented plots it is obvious that for increase of the order  of fractional derivative from zero to one we have a 

smooth transition from harmonic to damped vibration. In addition, it can be revealed that change of the nonlocal 

parameter  has significant influence on damped properties of the system i.e. an increase of the parameter decreases the 

vibration damping properties and influence of the parameter 0 . However, power series solution is convergent only for 

smaller times. Therefore, to improve this study other methods for solving the fractional order differential equation need 

to be considered.  
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