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Abstract. In this paper a novel metaheuristic method, 

artificial gorilla troops optimizer, is used in order to 

optimize classical proportional-integral controller 

for liquid level system, that has wide application in 

many industries. In optimization process nonlinear 

model of the system is used. Obtained results are 

provided. It is shown that optimized controller 

represents superior solution compared to classical 

controller.  
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1. INTRODUCTION

Different kinds of liquid tank plants are widely used

in many vary industries, including the chemical and

petrochemical, food and beverage, and others. As a

result, the control of liquid levels is an open problem

that always needs an optimal solution.

The liquid level in tanks can be controled using a

variety of techniques. Traditional feedback control

systems, such proportional-integral-derivative (PID-

like) controllers, are frequently employed. Compared

to more complex control systems, they are less

expensive and simpler, and many of these

controllers are able to keep the system's output

closely matching the desired value while staying

within error tolerances.

When Lotfi A. Zadeh established the principles of

fuzzy logic, automated control theory underwent a

radical change [1]. In [2], Fuzzy Logic Controller

(FLC) is applied for the liquid level control of

coupled tank system. It was shown that fuzzy-PID

control is significantly superior to classical control

methods.  Industry 4.0 encompasses application of

artificial intelligence (AI) for improvement of

industrial processes. In that manner, back propagation 

artificial neural network is used for controlling 

coupled water tank [3]. Combination of fuzzy logic 

and AI is used in [4], where Adaptive Neuro-Fuzzy 

Inference System (ANFIS) is designed for control of 

two tanks hydraulic system and in comparison with 

the FLC achieved few advantages. Due to their 

substantial nonlinearity and numerous local optima, 

global optimization issues are challenging to solve 

effectively. However, for nonlinear equations, it is 

necessary to confirm each equilibrium's stability [5]. 

A significant source of inspiration for this topic has 

been nature. These techniques include well-known 

algorithms like the particle swarm optimization 

(PSO), the genetic algorithm (GA), the firefly 

algorithm (FA), as well as some recently created 

algorithms like the grey wolf optimization (GWO) 

and the whale optimization algorithm (WOA) and 

some recently discovered algorithms like the artificial 

gorilla troops optimizer (GTO) [6]. These algorithms 

have many different uses and liquid level control is 

certainly one of them, like in [7, 8] where WOA and 

GWO are implemented, respectively.  

In this study artificial gorilla troops optimizer (GTO) 

method was used to optimize the classical PI 

controller in the liquid level control system, as one of 

the newer metaheuristic optimization algorithms that 

is still unused for this kind of task. 

2. OBJECT DESCRIPTION AND MODELING

Object that is used for the research includes two

cylindrical water tanks that are the same and

positioned one above another, water pump and water

basin. This object is shown in Fig. 1, while the

parameters that describe it are given in Table 1.
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Table 1: Parameters of the used object 

Out 1 Orifice Diameter, Do1 0.47625‧10-2 m 

Out 2 Orifice Diameter, Do2 0.47625‧10-2 m 

Tank 1 Inside Diameter, D1 4.445‧10-2 m 

Tank 2 Inside Diameter, D2 4.445‧10-2 m 

Pump Flow Constant, Kp 5.39‧10-6 m3\s\V 

Gravitational constant, g 9.81 m\s2 

Figure 1. Liquid level system 

Input value in the first subsystem (tank 1) is pump 

voltage Vp while the output is water level, H1. Eq. (1) 

and Eq. (2) mathematically describe inflow and 

outflow of tank 1, respectively.  

1i p pQ K V=        (1) 

1 1 1o o oQ A V=        (2) 

For tank 1 outflow velocity is marked with Vo1 and 

cross-sectional opening area is marked with Ao1.  

Input value in subsystem 2 (tank 2) is outflow from 

tank 1, and output is water level in that tank, H2. 

Outflow from the tank 2 is represented in Eq. (3) in 

which Ao2 is cross-sectional opening area of the 

second tank and Vo2 is outflow velocity.  

2 2 2o o oQ A V= (3) 

Mass balance equations for the first and the second 

subsystem are respectively:  

1

1 1 1 1 12i o P P o

dH
A Q Q K V A gH

dt
= − = − , (4) 

2

2 2 2 1 1 2 22 2i o o o

dH
A Q Q A gH A gH

dt
= − = − .  (5) 

Finally, nonlinear state-space model can be presented 

using following Eq. (6)-(8):  
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2.Y X= (8) 

In state-space model state variables are X1 = H1,     X2 

= H2, control variable is U = Vp and output variable is 

Y = H2.  

3. OPTIMIZATION OF PI CONTROLLER

USING THE GTO

Output value from PI controller is control signal and

it can be represented via Eq. (9).

( ) ( )
0

( )

t

p iu t K e t K e d = +         (9) 

In Eq. (9) error signal, e(t) is the difference between 

desired and obttained liquid level in the second tank.  

The algorithm used for optimization of PI controller 

is described below [6].   

In the GTO method, each gorilla is a candidate 

solution, and the silverback gorilla is the best 

candidate solution at each phase of the optimization 

process. 

For the exploration phase, GTO comprises of the 

following mechanisms: migration to an uncharted 

location, migrating to a known location, and moving 

to other gorillas. If rand is less than p, the first 

mechanism is chosen. However, if rand is larger than 

or equal to 0.5, the strategy of migration toward other 

gorillas is chosen. Finally, migration to a known 

location is decided when rand is less than 0.5. Eq. 

(10) was used to replicate the processes in the

exploration phase, where GX(t + 1) is the gorilla

candidate position vector in the next t iteration and

X(t) is the current vector of the gorilla position.

Additionally, each iteration updates the random

numbers in the range of 0 to 1 that make up r1, r2, r3,

and rand.

1

2

3

( - ) ,    ,

( 1) ( - ) ( ) ,    0.5,

( ) - ( ( ) - ( )) ( ( ) - ( ))),    0.5,

r

r r

UB LB r LB rand p

GX t r C X t L H rand

X i L L X t GX t r X t GX t rand

 + 


+ =  +  
   +  

(10)

Prior to performing an optimization operation within 

the same range p must be provided. The upper and 

lower bounds are denoted, respectively, by UB and 

LB. Xr is a gorilla in the group that was randomly 

chosen from the total population, and GXr is one of 

the vectors of potential gorilla positions that was also 

randomly chosen, but it includes the positions that 

91



were updated in each phase. The final calculations for 

C and L are:  

(1 / )C F It MaxIt=  − ,  (11) 

4cos(2 ) 1,   .F r L C l=  + =   (12) 

It is the current iteration value in this case, and MaxIt 

is the most iterations possible. Additionally picked at 

random, l is an integer between -1 and 1. 

Additionally, in Eq. (10), H is expressed as  

( )H Z X t=  ,              (13) 

whereas Z is determined by Z = [-C,C]. At the 

completion of the exploration phase, a group 

formation operation is performed, and all GX 

solutions' costs are calculated. The GX(t) solution is 

used in place of the X(t) solution if the cost is    GX(t) 

< X(t). The best solution developed during this stage 

is therefore known as a silverback. 

During the exploitation stage of the GTO algorithm, 

one of the two behaviors can be chosen by using the 

C value. The silverback mechanism is utilized if      C 
≥ W is chosen, but the adult females' competition is 

employed if C < W. Prior to the optimization 

procedure, W must be provided. Eq. (14), in which 

X(t) is the gorilla position vector and Xsilverback is 

the silverback gorilla position vector, best describes 

the first type of behavior, the silverback. Each 

probable candidate's vector location in iteration t is 

represented by GXi (t). The number N represents the 

total number of gorillas, and Eq. (15) is used to model 

the second type of behavior, competition. Here, the 

impact force is represented by  

                    52 1Q r=  − ,                        (16) 

where r5 and rand are random values between 0 and 

1.
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
             (15)

The value E is used to simulate the influence of 

violence on solution dimensions, and the coefficient 

vector A = β×E is used to determine the level of 

violence in conflicts. The parameter β is provided 

prior to the optimization process. At the end of the 

exploitation phase, the costs of all GX solutions are 

assessed. If the costs of GX (t) < X (t), the GX(t) 

solution is used as the X(t) solution, and the best 

solution produced among the population is viewed as 

a silverback. The suggested PI controller has two 

parameters, KP and KI, which can be changed to 

generate the best dynamical response. The adjustment 

of these gains has been the exclusive subject of this 

research. Moreover, the GTO optimization strategy 

was applied to create the best PI controller. In 

addition, each of the aforementioned parameters is 

programmed into a single agent, which in our 

scenario is given a vector with two parameters. The 

objective function uses the integral of absolute errors 

(IAE):  

( )IAE t t dt=     (17) 

In the proposed GTO algorithm, the maximum 

number of iterations and the number of search agents 

are set at 100 and 50, respectfully. Additionally, each 

agent represents a single potential best controller. All 

of the parameter values used in the GTO application 

were provided by the original study [6]. 

4.    RESULTS AND DISSCUSION  

The results obtained by optimization are compared 

with the results obtained by using a PI controller 

whose gains are determined by the trial and error 

method. Using the trial and error method obtained 

coefficients for PI controller are Kp = 95, and Ki = 5. 

On the other hand, using GTO optimization 

algorithm, obtained coefficients for PI controller are 

Kp = 100.0660, and Ki = 3.4522. 

Fig. 2 shows the system response if desired value is 

set to 0.18m. Control signal in this case is shown in 

Fig. 3.  

 
Figure 2. System response for desired value H2  

Even when a function that changes values over time 

is given as a desired value to the object, the control 

algorithm will succeed in making the system follow 

the set values, Fig. 3, and control signal Fig. 4. 
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Figure 3. Control signal for desired value H2 

The response of the object controlled by the 

optimized controller gives a smaller overshoot and a 

shorter settling time (Fig. 2). Also the optimized 

control gives better results in terms of the objective 

function than the classical controller: IAEoptimized = 

0.2597 and IAEclassical = 0.3613, respectively. 

 
Figure 4. System response if desired value, H2, 

changes over time   

 
Figure 5. Control signal if desired value, H2, changes 

over time   

 

5.    CONCLUSION 

In this paper, the liquid level system in the coupled 

tanks is controlled using the proportional-integral PI 

algorithm, whose gains were found using the novel 

metaheuristic GTO algorithm. The accurate nonlinear 

model of the system is introduced.  Following that, 

the theory of the GTO approach is provided. Finally, 

in the Matlab environment, it was demonstrated that 

the proposed algorithm was capable to control the 

object and obtain the specific positions. Desired and 

actual position are similar in all of the situations 

studied. The proposed control strategy may be used to 

operate more complicated and larger systems. 
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