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Abstract—Nowadays, digital twins are fostering the 
development of plug, simulate and optimize behavior in 
industrial cyber-physical systems. This paper presents a digital 
twin-based optimization of a motion system on the basis of a 
grey wolf optimization (GWO) method. The digital twin of the 
whole ultraprecision motion system with friction and backlash 
including a P-PI cascade controller is used as a basement to 
minimize the maximum position error. The simulation study 
and the real-time experiments in trajectory control are 
performed to compare the performance of the proposed GWO 
algorithm and the industrial method called Fine tune (FT) 
method. The simulation study shows that the digital twin –based 
optimization using GWO outperformed FT method with 
improvement of 66.4% in the reduction of the maximum 
position error. The real-time experimental results obtained 
show also the advantage of GWO method with 18% of 
improvement in the maximum peak error and 16% in accuracy.  

Keywords—digital twin, optimization, grey wolf optimizer, 
controller tuning, CNC machine tools  

I. INTRODUCTION 

Nowadays, a set of modeling and control methods for 
Industrial cyber-physical systems (ICPS) is available to 
enable new cooperation and coordination levels for achieving 
better efficiency short time-to-market solutions and more 
flexibility [1-3]. Several gaps and research challenges in 
ICPS should be addressed in short terms [4, 5]. Digital twins 
(DT) have emerged as a powerful strategy to deal with 
multiphysical, multiscale and heterogeneity of systems [6, 7]. 
Key aspects of DTs in relation to big data applications and a 
pathway to integrate them according to Industry 4.0 paradigm 
to foster smart manufacturing solutions were carefully 
analyzed in [8]. Certainly, the use of big data tools and 
methods in ICPS to deal with product lifecycle is not 
straightforward. Some contemporary studies have shown 
how efficient methods can be designed and deployed to 
address this hot topic on the basis of a DT-based procedure 
[9]. New research working towards shop-floor DT systems 
was reported in the literature as well as key components 
ranging from physical to DT data [10]. Nowadays, dozens of 
scientific and technical reports have demonstrated the wide 
range of DT applications in ICPS such as design of sensoring 
systems [11, 12], system integration and diagnostics [13], 
smart prediction and promising web services [14]. Recently, 

swarm intelligence and gradient free optimization methods 
have received more attention due to better computational 
framework and more efficient computing resources [15-18]. 
Soft-computing and machine learning have also 
demonstrated high potential in ICPS [19-21], but still few 
solutions based on DT. One challenging issue is related with 
the accuracy and exploitability of DTs in smart 
manufacturing. Indeed, manufacturing data and sensory data 
can be integrated into DTs of virtual systems to improve the 
overall behavior of the physical system [22, 23]. DTs in ICPS 
are lacking:  

- clear engineering procedures for systematic application 
of Artificial Intelligence, mainly machine learning 
methods, for designing and implementing DTs,  

- focus on feedback systems including human-in the-loop 
and closed-loop control system performance,  

- procedures for considering real-time constraints and real 
time issues in AI-based DTs and,  

- systematic procedures for DT-based optimization and 
adaptation procedures for smart manufacturing.  

From the viewpoint of modeling and control, traditional 
and AI-based modeling and control strategies have been 
explored in laboratories [24-26] but technology transfer is still 
cumbersome [27]. Therefore, DT are essential to address the 
unsatisfactory behavior of industrial systems due to poor 
tuning of controllers. For example, the calibration of cascade 
control systems is a cumbersome task for nonlinear systems, 
specifically before hard nonlinearities  [28]. In the last two 
decades, nature-inspired metaheuristic algorithms were 
designed and implemented to tackle  complex optimization 
problems and to provide a set of quasi-optimal solutions [29]. 
The advantages of swarm intelligence motivated the use of 
these methods in order to improve the tuning of P-PI cascade 
controllers’ parameters on the basis of DT. In this paper, a 
population-based metaheuristic method called grey wolf 
optimizer (GWO) is re-designed and tailored in a digital twin 
procedure shown in Fig. 1 to optimally set control and 
compensation parameters of motion system. The cost function 
or main figure of merit is maximum position error. Therefore, 
it is necessary to yield a set of parameters able to decrease as 
much as possible this error keeping the overall accuracy 



without remarkable increase in the control effort. The 
performance of the presented GWO method is evaluated by 
means of a simulation study and real-time experiments. 

 

 
Fig. 1. Diagram of the DT-based Optimization approach 
 
The structure of the paper is as follows. After a brief 

introductory overview of the physical and digital twins, 
Section 2 introduces the physical system and the 
corresponding digital twin. Section 3 presents a brief 
description of GWO algorithm, while Section 4 presents an 
industrial Fine Tune (FT) method applied for tuning of P-PI 
controller parameters. The simulation results and real-time 
experimental results are depicted in Section 5. The 
concluding remarks are summarized in Section 6. 

II. DIGITAL TWIN 

A. Physical System Description 

The real case study is based on a DT of a real 
ultraprecision motion system commonly available in machine 
tools. Nowadays, open Computerized Numerical Control 
(oCNC) are a key element to guarantee not only accurate and 
fast manufacturing but also for enabling communication with 
other machines and devices. The experimental platform is 
shown in Fig. 2. 

 

Fig. 2. Test platform. 

The regulation of position and velocity is performed by a 
P-PI cascade controller running in the open CNC. Real-time 
data, the controller’ parameters and key variables can be 

easily gathered via open CNC. The most important 
parameters of the whole physical system are summarized in 
Table I. 

TABLE I PHYSICAL SYSTEM  

Symbol Quantity Value 

JM Motor inertia 2.9ꞏ10- 4 kgꞏm2 
JL Load inertia 4.2ꞏ10- 4 kgꞏm2

f1, ω01 Resonance frequency 70 Hz, 2πf1 rad/s 
D1 Damping coefficient 0.15 
Kt Torque constant 0.74 Nꞏm/A 
frH Actual hysteresis 0.1280 rad/s 
FC Coulomb friction 0.625 Nꞏm 
FV Viscous friction 0 Nꞏmꞏs 
 Backlash  12.2ꞏ10-6 m 
KH Spindle Constant 0.010/(2π) m/rad 
NP121 Input revolutions for 

coupling the motor shaft 
and leadscrew 

3 

NP122 Output revolutions,
NP121/NP122 is the 
gear ratio 

2 

NP123 Feed constant for linear 
axis 

0.02m 

NP1 Reduced actuated 
momentum of inertia  

144.61% 
 

Ts1,Ts2 Sampling time for 
position and velocity 
loops  

250µs, 62.5µs  

   

B. Digital twin description. 

The DT is composed of two key virtual modules, one for 
representing the electromechanical system and another one 
for emulating the control systems. The two masses and spring 
system serves as basement for representing the motion system 
including the motor, the shaft, and the load. [26]. If the 
resonance and antiresonance frequencies, ω01 and ω02, are 
defined as: 
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The transfer function that relates motor speed and torque is: 
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By using the previously defined values of, 02 , D1, and D2, 
the transfer function relating motor and load velocities 
becomes: 
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Moreover, an electric model that relates electric current to 
the torque developed by the motor is also considered in the 
DT. Friction, backlash and noise are also considered in the 
DT, through computationally efficient models. Friction is 
represented by a viscous friction component, FV, relies on the 
relative velocity between the surfaces, v, depicted in (5): 

C Vsgn( ) F F v F v . (5) 

The backlash compensation is also represented by virtual 
element. The backlash peak amplitude PP2 and peak time 
PP3 are essential for increasing motor speed during a time 
period making possible the exponential compensation due to 
movement reversal peak, can be: 

3
2

/e t P P
PR P P   (6) 

The sixth parameter is the hysteresis amplitude, fH. The 
compensation of these non-linearities requires to face the zero 
cross discontinuity problem, solved by appropriately set of 
the hysteresis amplitude.  

Therefore, on the basis of the relevance of the six 
parameters previously explained, the DT-based optimization 
method for an ultraprecision motion system sets the following 
parameter’s vector: 

pos vel vel
p p 2 3 H    iK K K K PP PP f     (7) 

where, pos
pK  is the proportional gain of the position 

controller; vel vel
p  , iK K are the proportional and integral gain, 

respectively, of the speed controller. 2PP  and 3PP  are the 
peak amplitude and peak time for compensating the backlash 
and,  Hf   is the compensator for the friction hysteresis. 

III. GREY WOLF OPTIMIZATION ALGORITHM 

The Grey Wolf Optimization (GWO) algorithm, initially 
proposed by Mirjalili et al. in [30], belongs to class of novel 
swarm-based meta-heuristics inspired from the social 
leadership and hunting technique of grey wolves in nature. 
According to GWO algorithm, the grey wolves are classified 
into four levels of social hierarchy: alpha (α), beta (β), delta 
(δ), and omega (ω). The alphas are the leaders of the group 
responsible for hunting process and making decisions. The 
betas belong to the second level of hierarchy and they assist 
the alphas in making decisions, while deltas belong to the third 
level and dominate the wolves of the last level omega. The 
omegas are the lowest ranking grey wolves on the pyramid of 
social hierarchy.  

GWO algorithm is based on the aforementioned social 
behavior of the grey wolves. Optimization (hunting) process 
is initialized with randomly generated candidate solutions 
(grey wolves) in a multi-dimensional search space. This phase 
of searching for prey is also known as exploration. The best 
fitness solution is defined as alpha (α), the second and third 
best solutions are beta (β) and delta (δ), and the rest of the 
solutions are assumed to be omega (ω). In order to catch the 
prey, the α, β, and δ grey wolves firstly encircle the victim. 
During the optimization (hunting) process, they estimate the 
victim position and update their positions randomly around 
the victim according to the mathematical model given by the 
following equations (8) and (9): 

( t) (t)pD C X X  
  

  (8) 

(t 1) (t) A DpX X   
  

       

(9) 

where t represents iteration,


pX is the position vector of the 

prey,

X is the position vector of a grey wolf,


A and


C are 

coefficient vectors calculated by (10), (11): 

12A a r a  
   

       

(10) 

22C r 
 

        

(11) 

The components of vector 

a  linearly decrease from 2 to 

0, and r1 and r2 are random vectors in [0,1]. 
Furthermore, hunting behavior of the grey wolves can be 

mathematically modeled by equations (12), (13) and (14): 

1D C X X   
  

    

(12) 

1D C X X   
  

  (13) 

1D C X X   
  

  (14) 

The positions of α, β, and δ grey wolves (the first free best 
solutions) are updated according to the following equations: 

1 1 (D )X X A  
  

  (15) 

2 2 (D )X X A  
  

                (16) 

3 3 (D )X X A  
  

  (17) 

1 2 3(t 1)
3

X X X
X

 
 

  
 (18) 

 Finally, the hunting process is finished by attaching the prey 
(exploitation phase). The pseudocode of GWO algorithm is 
shown in Table II.  

TABLE II. PSEUDO CODE OF GWO ALGORITHM 

Initialize the GWO algorithm (population size, maximum number of 
iterations, position vector X, and vectors A, a, C); 
Initialize a population of grey wolves (11)-(12); 
Evaluate each grey wolf’s fitness function by using (10);  
Identify three best wolves (the best search agent - Xα, the second best 
search agent - Xβ,  the third best search agent - Xδ) according to their 
fitness functions; 
Repeat 
      generate next population by updating each agent position (15)-(17); 
      update a, A, C by using (10) and (11); 
      compute each agent’s fitness function (8); 
      update Xα, Xβ, Xδ; 
Until the maximum of generation is not met 
Output: the optimal parameters 

pos vel vel
p p 2 3 H OPT

     iK K K PP PP f    



IV. FINE TUNE METHOD  

The Fine Tune (FT) method is a well-known method to 
manually tune CNC machine tools in order to improve their 
performance. Different experimental-based procedures 
combined with computational intelligence methods such as 
expert systems or fuzzy logic, as well as information about 
knowledge accumulated in databases, can be used for fine 
tuning of one axis or all CNC axes automatically. Finally, the 
tuning of servo-performance of CNC machine tools axes is 
carried out by combining experimental studies and frequency 
response diagrams. More details about FT method can be 
found in [31].  

V. EXPERIMENTAL RESULTS 

A. Simulation results  

This section provides information related to parameters 
setting of proposed algorithms. The implementation of the 
method is carried out Matlab R2019 software package. The 
personal computers has an Intel Core i7-4790 CPU 3.6GHz 
with 16GB RAM. The main parameters of the GWO are the 
size of population 20, the maximum number of iterations 100, 
a linearly decreasing of a parameter [2,0], and random vectors 
[0,1] for r1 and r2.  

The simulation results of GWO algorithm using the 
digital twin are compared with the results achieved by FT 
method. The optimal parameters are KFT=[66.67, 0.29, 0.008 
0.718, 0.008, 0.1288] and KGWO=[75.00, 0.2632, 0.0012 
0.4368, 0.04393, 0.00231]. The average computing time for 
FT is 14.4 103s whereas for GWO it takes 9.75103s. Fig. 3 
shows the reference position and velocity used in simulation 
and experiments of the tracking and trajectory control in 
experiments that lasted 32.76 seconds. These reference 
values are further used for validating the proposed digital 
twin-based GWO methodology. Fig. 4 shows how GWO 
algorithm achieves the best performance index with a 
remarkable reduction in maxE quantified in 66.4% in 
comparison with the Fine Tune method. The simulation 
results of position error are presented in Fig. 5, including a 
zoom in, and the control signal is presented in Fig. 5. The 
dynamic response shown in Fig. 5 corroborates the good 
accuracy of the GWO for tracking the desired trajectory. 

 

 

Fig. 3 The reference position for trajectory control.  
 
 
 

 

Fig. 4 Performance indices in simulation results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5 Simulation results of FT and GWO for tuning cascade P-PI control 
system  
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Fig. 6 Behavior of the simulated current signal for FT method and GWO 
algorithm  

B. Real-time experiments 

Real-time experiments for evaluating CNC machine tool 
positioning system with both set of parameters yielded by FT 
and GWO were conducted in the test platform shown in Fig. 
2. The comparison of GWO and Fine Tuning method is 
carried out considering maxE, ITAE and IAU. Fig. 8 shows 
the resulting performance indices.  

These experimental results are very well aligned with the 
simulation results, and corroborated that  GWO outperforms 
Fine Tune Method by a remarkable reduction in the maxE 
with very good accuracy according to ITAE. This 
improvement can be quantified in 18% and 16% for maxE 
and ITAE, respectively. Moreover, the excellent behavior is 
also endorsed with a 2.42% reduction in the control effort. 
The obtained position error during the experiment is 
illustrated in Fig. 8 and the control signal is illustrated in Fig. 
9.  

 
Fig. 7 Performance indices in experimental results 

 
Fig. 8 Experimental results of position error when FT method and digital 
twin-based GWO method are applied.  

 
Fig. 9 Behavior of the control signal in both methods. 

VI. CONCLUSION 

This paper proposes a digital twin-based optimization 
method supported on grey wolf optimizer algorithm for 
optimally adjusting parameters in ultraprecision motion 
systems widely applied in machine tool positioning systems. 
The objective function is to reduce as much as possible the 
maximum position error in presence of hard nonlinearities. 
This optimization process results in a set of six optimal 
parameters. Both simulation and experimental results are 
compared with industry driven method called Fine Tune 
(FT). The simulation results show a very remarkable 
improvement in accuracy and good transient response. The 
real-time experiments carried out on a testing platform with 
Fagor 8070 controllers also demonstrate the advantage of the 
GWO over FT method on the basis of lesser maximum peak 
error (18%), better accuracy (16%) with almost the same or 
less control effort (2.42%).  
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