Veličković, Zlate

Link to this page

Authority KeyName Variants
orcid::0000-0001-5335-074X
  • Veličković, Zlate (6)
Projects

Author's Bibliography

Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study

Salih, Rabab; Veličković, Zlate; Milošević, Milena; Pavlović, Vera P.; Cvijetić, Ilija; Sofrenić, Ivana V.; Gržetić, Jelena D.; Marinković, Aleksandar

(Elsevier, 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Veličković, Zlate
AU  - Milošević, Milena
AU  - Pavlović, Vera P.
AU  - Cvijetić, Ilija
AU  - Sofrenić, Ivana V.
AU  - Gržetić, Jelena D.
AU  - Marinković, Aleksandar
PY  - 2023
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3952
AB  - Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.
PB  - Elsevier
T2  - Journal of Environmental Management
T1  - Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study
IS  - January
SP  - 116838
VL  - 326
DO  - 10.1016/j.jenvman.2022.116838
ER  - 
@article{
author = "Salih, Rabab and Veličković, Zlate and Milošević, Milena and Pavlović, Vera P. and Cvijetić, Ilija and Sofrenić, Ivana V. and Gržetić, Jelena D. and Marinković, Aleksandar",
year = "2023",
abstract = "Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.",
publisher = "Elsevier",
journal = "Journal of Environmental Management",
title = "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study",
number = "January",
pages = "116838",
volume = "326",
doi = "10.1016/j.jenvman.2022.116838"
}
Salih, R., Veličković, Z., Milošević, M., Pavlović, V. P., Cvijetić, I., Sofrenić, I. V., Gržetić, J. D.,& Marinković, A.. (2023). Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management
Elsevier., 326(January), 116838.
https://doi.org/10.1016/j.jenvman.2022.116838
Salih R, Veličković Z, Milošević M, Pavlović VP, Cvijetić I, Sofrenić IV, Gržetić JD, Marinković A. Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management. 2023;326(January):116838.
doi:10.1016/j.jenvman.2022.116838 .
Salih, Rabab, Veličković, Zlate, Milošević, Milena, Pavlović, Vera P., Cvijetić, Ilija, Sofrenić, Ivana V., Gržetić, Jelena D., Marinković, Aleksandar, "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study" in Journal of Environmental Management, 326, no. January (2023):116838,
https://doi.org/10.1016/j.jenvman.2022.116838 . .
19
16

Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study

Salih, Rabab; Veličković, Zlate; Milošević, Milena; Pavlović, Vera P.; Cvijetić, Ilija; Sofrenić, Ivana V.; Gržetić, Jelena D.; Marinković, Aleksandar

(Elsevier, 2023)

TY  - JOUR
AU  - Salih, Rabab
AU  - Veličković, Zlate
AU  - Milošević, Milena
AU  - Pavlović, Vera P.
AU  - Cvijetić, Ilija
AU  - Sofrenić, Ivana V.
AU  - Gržetić, Jelena D.
AU  - Marinković, Aleksandar
PY  - 2023
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/7310
AB  - Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.
PB  - Elsevier
T2  - Journal of Environmental Management
T1  - Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study
SP  - 116838
VL  - 326
DO  - 10.1016/j.jenvman.2022.116838
ER  - 
@article{
author = "Salih, Rabab and Veličković, Zlate and Milošević, Milena and Pavlović, Vera P. and Cvijetić, Ilija and Sofrenić, Ivana V. and Gržetić, Jelena D. and Marinković, Aleksandar",
year = "2023",
abstract = "Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 μm diameters, 69.4 m2 g−1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g−1 for MG, 86.8 mg g−1 for T, and 68.6 mg g−1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.",
publisher = "Elsevier",
journal = "Journal of Environmental Management",
title = "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study",
pages = "116838",
volume = "326",
doi = "10.1016/j.jenvman.2022.116838"
}
Salih, R., Veličković, Z., Milošević, M., Pavlović, V. P., Cvijetić, I., Sofrenić, I. V., Gržetić, J. D.,& Marinković, A.. (2023). Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management
Elsevier., 326, 116838.
https://doi.org/10.1016/j.jenvman.2022.116838
Salih R, Veličković Z, Milošević M, Pavlović VP, Cvijetić I, Sofrenić IV, Gržetić JD, Marinković A. Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study. in Journal of Environmental Management. 2023;326:116838.
doi:10.1016/j.jenvman.2022.116838 .
Salih, Rabab, Veličković, Zlate, Milošević, Milena, Pavlović, Vera P., Cvijetić, Ilija, Sofrenić, Ivana V., Gržetić, Jelena D., Marinković, Aleksandar, "Lignin based microspheres for effective dyes removal: Design, synthesis and adsorption mechanism supported with theoretical study" in Journal of Environmental Management, 326 (2023):116838,
https://doi.org/10.1016/j.jenvman.2022.116838 . .
19
16

Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent

Popović, Mina; Veličković, Zlate; Bogdanov, Jovica; Marinković, Aleksandar; Casas Luna, Mariano; Trajković, Isaak; Obradović, Nina; Pavlović, Vladimir B.

(Scinece of Sintering, 2022)

TY  - JOUR
AU  - Popović, Mina
AU  - Veličković, Zlate
AU  - Bogdanov, Jovica
AU  - Marinković, Aleksandar
AU  - Casas Luna, Mariano
AU  - Trajković, Isaak
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/5922
AB  - In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal - one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2oC, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.
PB  - Scinece of Sintering
T1  - Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent
VL  - 54
DO  - 10.2298/SOS2201105P
ER  - 
@article{
author = "Popović, Mina and Veličković, Zlate and Bogdanov, Jovica and Marinković, Aleksandar and Casas Luna, Mariano and Trajković, Isaak and Obradović, Nina and Pavlović, Vladimir B.",
year = "2022",
abstract = "In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal - one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ•mol-1 for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g-1 for As(V) and Cr(VI) at 2oC, Co = 5.5 and 5.3 mg L-1, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.",
publisher = "Scinece of Sintering",
title = "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent",
volume = "54",
doi = "10.2298/SOS2201105P"
}
Popović, M., Veličković, Z., Bogdanov, J., Marinković, A., Casas Luna, M., Trajković, I., Obradović, N.,& Pavlović, V. B.. (2022). Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. 
Scinece of Sintering., 54.
https://doi.org/10.2298/SOS2201105P
Popović M, Veličković Z, Bogdanov J, Marinković A, Casas Luna M, Trajković I, Obradović N, Pavlović VB. Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. 2022;54.
doi:10.2298/SOS2201105P .
Popović, Mina, Veličković, Zlate, Bogdanov, Jovica, Marinković, Aleksandar, Casas Luna, Mariano, Trajković, Isaak, Obradović, Nina, Pavlović, Vladimir B., "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent", 54 (2022),
https://doi.org/10.2298/SOS2201105P . .
3

Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent

Popović, Mina; Veličković, Zlate; Bogdanov, Jovica; Marinković, Aleksandar D.; Luna, Mariano Casas; Trajković, Isaak; Obradović, Nina; Pavlović, Vladimir B.

(Međunarodni Institut za nauku o sinterovanju, Beograd, 2022)

TY  - JOUR
AU  - Popović, Mina
AU  - Veličković, Zlate
AU  - Bogdanov, Jovica
AU  - Marinković, Aleksandar D.
AU  - Luna, Mariano Casas
AU  - Trajković, Isaak
AU  - Obradović, Nina
AU  - Pavlović, Vladimir B.
PY  - 2022
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3740
AB  - In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal - one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ.mol(-1) for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g(-1) for As(V) and Cr(VI) at 2 degrees C, Co = 5.5 and 5.3 mg L-l, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.
PB  - Međunarodni Institut za nauku o sinterovanju, Beograd
T2  - Science of Sintering
T1  - Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent
EP  - 124
IS  - 1
SP  - 105
VL  - 54
DO  - 10.2298/SOS2201105P
ER  - 
@article{
author = "Popović, Mina and Veličković, Zlate and Bogdanov, Jovica and Marinković, Aleksandar D. and Luna, Mariano Casas and Trajković, Isaak and Obradović, Nina and Pavlović, Vladimir B.",
year = "2022",
abstract = "In this study, the structure, morphology and composition of the synthesized magnetite/3D-printed wollastonite (3D_W/M) composite were characterized, and its adsorption performance with respect to As(V) and Cr(VI) were studied. Magnetite (MG) modified 3D printed wollastonite was obtained by two step procedure: modification of 3D_W with 3-aminoproylsilane (APTES) followed by controlled magnetite (MG) deposition to obtain 3D_W/M adsorbent. The structure/properties of 3D_W/M were confirmed by applying FTIR, XRD, TGD/DTA, and SEM analysis. The adsorption properties of hybrid adsorbents were carried out for As(V) and Cr(VI) removal - one relative to the initial pH value, the adsorbent mass, the temperature, and the adsorption time. Time-dependent adsorption study was best described by pseudo-second order equation, while Weber Morris analysis showed that intraparticle diffusion controled diffusional transport. Similar activation energy, 17.44 and 14.49 kJ.mol(-1) for adsorption As(V) and Cr(VI) on 3D_W/M, respectively, indicated main contribution of physical adsorption. Determination of adsorption parameters was performed by applying different adsorption isotherm models, and the best fit was obtained using Freundlich model. The adsorption capacity of 24.16 and 29.6 mg g(-1) for As(V) and Cr(VI) at 2 degrees C, Co = 5.5 and 5.3 mg L-l, respectively, were obtained. Thermodynamic study indicated favourable process at a higher temperature. Preliminary fixed-bed column study and results fitting with Bohart-Adams, Yoon-Nelson, Thomas, and Modified dose-response model showed good agreement with results from the batch study.",
publisher = "Međunarodni Institut za nauku o sinterovanju, Beograd",
journal = "Science of Sintering",
title = "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent",
pages = "124-105",
number = "1",
volume = "54",
doi = "10.2298/SOS2201105P"
}
Popović, M., Veličković, Z., Bogdanov, J., Marinković, A. D., Luna, M. C., Trajković, I., Obradović, N.,& Pavlović, V. B.. (2022). Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering
Međunarodni Institut za nauku o sinterovanju, Beograd., 54(1), 105-124.
https://doi.org/10.2298/SOS2201105P
Popović M, Veličković Z, Bogdanov J, Marinković AD, Luna MC, Trajković I, Obradović N, Pavlović VB. Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent. in Science of Sintering. 2022;54(1):105-124.
doi:10.2298/SOS2201105P .
Popović, Mina, Veličković, Zlate, Bogdanov, Jovica, Marinković, Aleksandar D., Luna, Mariano Casas, Trajković, Isaak, Obradović, Nina, Pavlović, Vladimir B., "Removal of the As(V) and Cr(VI) from the Water Using Magnetite/3D-Printed Wollastonite Hybrid Adsorbent" in Science of Sintering, 54, no. 1 (2022):105-124,
https://doi.org/10.2298/SOS2201105P . .
3
2

Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal

Popović, Ana L.; Rusmirović, Jelena D.; Veličković, Zlate; Radovanović, Željko; Ristić, Mirjana; Pavlović, Vera P.; Marinković, Aleksandar D.

(Elsevier, 2020)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirović, Jelena D.
AU  - Veličković, Zlate
AU  - Radovanović, Željko
AU  - Ristić, Mirjana
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
PY  - 2020
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/4067
AB  - Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 μm diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal
EP  - 1173
SP  - 1160
VL  - 156
DO  - 10.1016/j.ijbiomac.2019.11.152
ER  - 
@article{
author = "Popović, Ana L. and Rusmirović, Jelena D. and Veličković, Zlate and Radovanović, Željko and Ristić, Mirjana and Pavlović, Vera P. and Marinković, Aleksandar D.",
year = "2020",
abstract = "Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 μm diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal",
pages = "1173-1160",
volume = "156",
doi = "10.1016/j.ijbiomac.2019.11.152"
}
Popović, A. L., Rusmirović, J. D., Veličković, Z., Radovanović, Ž., Ristić, M., Pavlović, V. P.,& Marinković, A. D.. (2020). Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules
Elsevier., 156, 1160-1173.
https://doi.org/10.1016/j.ijbiomac.2019.11.152
Popović AL, Rusmirović JD, Veličković Z, Radovanović Ž, Ristić M, Pavlović VP, Marinković AD. Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules. 2020;156:1160-1173.
doi:10.1016/j.ijbiomac.2019.11.152 .
Popović, Ana L., Rusmirović, Jelena D., Veličković, Zlate, Radovanović, Željko, Ristić, Mirjana, Pavlović, Vera P., Marinković, Aleksandar D., "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal" in International Journal of Biological Macromolecules, 156 (2020):1160-1173,
https://doi.org/10.1016/j.ijbiomac.2019.11.152 . .
1
53
15
53

Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal

Popović, Ana L.; Rusmirović, Jelena D.; Veličković, Zlate; Radovanović, Željko; Ristić, Mirjana; Pavlović, Vera P.; Marinković, Aleksandar D.

(Elsevier, Amsterdam, 2020)

TY  - JOUR
AU  - Popović, Ana L.
AU  - Rusmirović, Jelena D.
AU  - Veličković, Zlate
AU  - Radovanović, Željko
AU  - Ristić, Mirjana
AU  - Pavlović, Vera P.
AU  - Marinković, Aleksandar D.
PY  - 2020
UR  - https://machinery.mas.bg.ac.rs/handle/123456789/3419
AB  - Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 μm diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.
PB  - Elsevier, Amsterdam
T2  - International Journal of Biological Macromolecules
T1  - Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal
EP  - 1173
SP  - 1160
VL  - 156
DO  - 10.1016/j.ijbiomac.2019.11.152
ER  - 
@article{
author = "Popović, Ana L. and Rusmirović, Jelena D. and Veličković, Zlate and Radovanović, Željko and Ristić, Mirjana and Pavlović, Vera P. and Marinković, Aleksandar D.",
year = "2020",
abstract = "Novel highly effective amino-functionalized lignin-based biosorbent in the microsphere geometry (A-LMS) for removal of heavy metal ions, was synthesized via inverse suspension copolymerization of kraft lignin with poly(ethylene imine) grafting-agent and epoxy chloropropane cross-linker. Optimization of A-LMS synthesis, performed with respect to the quantity of sodium alginate emulsifier (1, 5 and 10 wt%), provides highly porous microspheres A-LMS_5, using 5 wt% emulsifier, with 800 ± 80 μm diameter, 7.68 m(2) g(-1) surface area and 7.7 mmol g(-1) of terminal amino groups. Structural and surface characteristics were obtained from Brunauer-Emmett-Teller method, Fourier Transform-Infrared spectroscopy, scanning electron microscopy, X-ray photo-electron spectroscopy and porosity determination. In a batch test, the influence of pH, A-LMS_5 dose, temperature, contact time on adsorption efficiency of Ni2+, Cd2+, As(V) and Cr(VI) ions were studied. The adsorption is spontaneous and feasible with maximum adsorption capacity of 74.84, 54.20, 53.12 and 49.42 mg g(-1) for Cd2+, Cr(VI), As(V) and Ni2+ ions, respectively, obtained by using Langmuir model. Modeling of kinetic data indicated fast adsorbate removal rate with pore diffusional transport as rate limiting step (pseudo-second order model and Weber-Morris equations), thus further confirming high performances of produced bio-adsorbent for heavy metal ions removal.",
publisher = "Elsevier, Amsterdam",
journal = "International Journal of Biological Macromolecules",
title = "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal",
pages = "1173-1160",
volume = "156",
doi = "10.1016/j.ijbiomac.2019.11.152"
}
Popović, A. L., Rusmirović, J. D., Veličković, Z., Radovanović, Ž., Ristić, M., Pavlović, V. P.,& Marinković, A. D.. (2020). Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules
Elsevier, Amsterdam., 156, 1160-1173.
https://doi.org/10.1016/j.ijbiomac.2019.11.152
Popović AL, Rusmirović JD, Veličković Z, Radovanović Ž, Ristić M, Pavlović VP, Marinković AD. Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal. in International Journal of Biological Macromolecules. 2020;156:1160-1173.
doi:10.1016/j.ijbiomac.2019.11.152 .
Popović, Ana L., Rusmirović, Jelena D., Veličković, Zlate, Radovanović, Željko, Ristić, Mirjana, Pavlović, Vera P., Marinković, Aleksandar D., "Novel amino-functionalized lignin microspheres: High performance biosorbent with enhanced capacity for heavy metal ion removal" in International Journal of Biological Macromolecules, 156 (2020):1160-1173,
https://doi.org/10.1016/j.ijbiomac.2019.11.152 . .
1
53
15
53